1,128 research outputs found

    Multiple resolution surface wave tomography: the Mediterranean basin

    Get PDF
    From a large set of fundamental-mode surface wave phase velocity observations, we map the transversely isotropic lateral heterogeneities in the upper-mantle shear velocity structure. We design a multiple resolution inversion procedure, which allows us to parametrize any selected region more finely than the rest of the globe. We choose, as a high-resolution region, the upper mantle underlying the Mediterranean basin. We formulate the inverse problem as in a previous paper by Boschi & Ekström, calculating regional JWKB (Jeffreys-Wentzel-Kramers-Brillouin) surface wave sensitivity kernels for each pixel of a 2°× 2° starting model, including the high-resolution global crustal map Crust 2.0. We find that the available surface wave data can resolve the most important geophysical features of the region of interest, providing a reliable image of intermediate spatial wavelengt

    The Cloud Condensation Nuclei (CCN) properties of 2-methyltetrols and C3-C6 polyols from osmolality and surface tension measurements

    Get PDF
    A significant fraction of the organic material in aerosols is made of highly soluble compounds such as sugars (mono- and polysaccharides) and polyols such as the 2-methyltetrols, methylerythritol and methyltreitol. Because of their high solubility these compounds are considered as potentially efficient CCN material. For the 2-methyltetrols, this would have important implications for cloud formation at global scale because they are thought to be produced by the atmospheric oxidation of isoprene. To investigate this question, the complete Köhler curves for C3-C6 polyols and the 2-methyltetrols have been determined experimentally from osmolality and surface tension measurements. Contrary to what was expected, none of these compounds displayed a higher CCN efficiency than organic acids. Their Raoult terms show that this limited CCN efficiency is due to their absence of dissociation in water, this in spite of slight surface-tension effects for the 2-methyltetrols. Thus, compounds such as saccharides and polyols would not contribute more to cloud formation than other organic compounds studied so far. In particular, the presence of 2-methyltetrols in aerosols would not particularly enhance cloud formation in the atmosphere, in contrary to recently suggested

    Effects of three-nucleon forces and two-body currents on Gamow-Teller strengths

    Get PDF
    We optimize chiral interactions at next-to-next-to leading order to observables in two- and three-nucleon systems, and compute Gamow-Teller transitions in carbon-14, oxygen-22 and oxygen-24 using consistent two-body currents. We compute spectra of the daughter nuclei nitrogen-14, fluorine-22 and fluorine-24 via an isospin-breaking coupled-cluster technique, with several predictions. The two-body currents reduce the Ikeda sum rule, corresponding to a quenching factor q^2 ~ 0.84-0.92 of the axial-vector coupling. The half life of carbon-14 depends on the energy of the first excited 1+ state, the three-nucleon force, and the two-body current

    First Odin sub-mm retrievals in the tropical upper troposphere: ice cloud properties

    Get PDF
    International audienceMore accurate global measurements of the amount of ice in thicker clouds are needed to validate atmospheric models and sub-mm radiometry can be an important component in this respect. A cloud ice retrieval scheme for the first such instrument in space, Odin-SMR, is presented here. Several advantages of sub-mm observations are shown, such as low influence of particle shape and orientation, and a high dynamic range of the retrievals. In the case of Odin-SMR, only cloud ice above ?12.5 km can be measured. The present retrieval scheme gives a detection threshold of about 4 g/m2 above 12.5 km and does not saturate even for thickest observed clouds (>500 g/m2). The main retrieval uncertainties are the assumed particle size distribution and cloud inhomogeneity effects. The overall retrieval accuracy is estimated to be ~75%. The retrieval error is judged to have large random components and to be significantly lower than this value for averaged results, but high fixed errors can not be excluded. However, a firm lower value can always be provided. Initial results are found to be consistent with similar Aura MLS retrievals, but show important differences to corresponding data from atmospheric models. This first retrieval algorithm is limited to lowermost Odin-SMR tangent altitudes, and further development should improve the detection threshold and the vertical resolution. It should also be possible to decrease the retrieval uncertainty associated with cloud inhomogeneities by detailed analysis of other data sets

    Aspirin and risk for gastric cancer: a population-based case–control study in Sweden

    Get PDF
    While aspirin and other non-steroid anti-inflammatory drugs (NSAIDs) are associated with gastric mucosal damage, they might reduce the risk for gastric cancer. In a population-based case–control study in 5 Swedish counties, we interviewed 567 incident cases of gastric cancer and 1165 controls about their use of pain relievers. The cases were uniformly classified to subsite (cardia/non-cardia) and histological type and information collected on other known risk factors for gastric cancer. Helicobacter pylori serology was tested in a subset of 542 individuals. Users of aspirin had a moderately reduced risk of gastric cancer compared to never users; odds ratio (OR) adjusted for age, gender and socioeconomic status was 0.7 (95% CI = 0.6–1.0). Gastric cancer risk fell with increasing frequency of aspirin use (P for trend = 0.02). The risk reduction was apparent for both cardia and non-cardia tumours but was uncertain for the diffuse histologic type. No clear association was observed between gastric cancer risk and non-aspirin NSAIDs or other studied pain relievers. Our finding lends support to the hypothesis that use of aspirin reduces the risk for gastric cancer. © 2001 Cancer Research Campaign http://www.bjcancer.co

    Comparison between early Odin-SMR, Aura MLS and CloudSat retrievals of cloud ice mass in the upper tropical troposphere

    Get PDF
    International audienceEmerging microwave satellite techniques are expected to provide improved global measurements of cloud ice mass. CloudSat, Aura MLS and Odin-SMR fall into this category and early cloud ice retrievals from these instruments are compared. The comparison follows the SMR retrieval product and is made for partial ice water columns above 12 km. None of the retrievals shows a significant degree of false cloud detections, the ratio between local mean values from the instruments is fairly constant and a consistent view of the geographical distribution of cloud ice is obtained. However, important differences on the absolute levels exist, where the overall mean is 9.6, 4.2 and 3.7 g m?2 for CloudSat, SMR and MLS, respectively. Assumptions about the particle size distribution (PSD) are a consideration for all three instruments and constitute the dominating retrieval uncertainty for CloudSat. The mean for CloudSat when applying the same PSD as for MLS and SMR was estimated to 6.3 g m?2. A second main consideration for MLS and SMR are the effects caused by the poorer spatial resolution: a possible vertical misplacement of retrieved values and an impact of cloud inhomogeneities. The latter effect was found to be the dominating retrieval uncertainty for SMR, giving a possible mean value range of 2.3?8.9 g m?2. The comparison indicates a common retrieval accuracy in the order of 70%. Already this number should suffice for improved validations of cloud ice parametrisation schemes in atmospheric models, but a substantially better consistency between the datasets should be attainable through an increased understanding of main retrieval error sources

    Comparison between the first Odin-SMR, Aura MLS and CloudSat retrievals of cloud ice mass in the upper tropical troposphere

    No full text
    International audienceEmerging microwave satellite techniques are expected to provide improved global measurements of cloud ice mass. CloudSat, Aura MLS and Odin-SMR fall into this category and first cloud ice retrievals from these instruments are compared. The comparison is made for partial ice water columns above 12 km, following the SMR retrieval product. None of the instruments shows significant false cloud detections and a consistent view of the geographical distribution of cloud ice is obtained, but differences on the absolute levels exist. CloudSat gives the lowest values, with an overall mean of 2.12 g/m2. A comparable mean for MLS is 4.30 g/m2. This relatively high mean can be an indication of overestimation of the vertical altitude of cloud ice by the MLS retrievals. The vertical response of SMR has also some uncertainty, but this does not affect the comparison between MLS and CloudSat. SMR observations are sensitive to cloud inhomogeneities inside the footprint and some compensation is required. Results in good agreement with CloudSat, both in regard of the mean and probability density functions, are obtained for a weak compensation, while a simple characterisation of the effect indicates the need for stronger compensation. The SMR mean was found to be 1.89/2.62/4.10 g/m2 for no/selected/strongest compensation, respectively. Assumptions about the particle size distribution are a consideration for all three instruments, and constitute the dominating retrieval uncertainty for CloudSat. The comparison indicates a retrieval accuracy of about 40% (3.1±1.2 g/m2). This number is already very small compared to uncertainties of cloud ice parametrisation in atmospheric models, but can be decreased further through a better understanding of main retrieval error sources

    A possible role of ground-based microorganisms on cloud formation in the atmosphere

    Get PDF
    The formation of clouds is an important process for the atmosphere, the hydrological cycle, and climate, but some aspects of it are not completely understood. In this work, we show that microorganisms might affect cloud formation without leaving the Earth's surface by releasing biological surfactants (or biosurfactants) in the environment, that make their way into atmospheric aerosols and could significantly enhance their activation into cloud droplets. <br><br> In the first part of this work, the cloud-nucleating efficiency of standard biosurfactants was characterized and found to be better than that of any aerosol material studied so far, including inorganic salts. These results identify molecular structures that give organic compounds exceptional cloud-nucleating properties. In the second part, atmospheric aerosols were sampled at different locations: a temperate coastal site, a marine site, a temperate forest, and a tropical forest. Their surface tension was measured and found to be below 30 mN/m, the lowest reported for aerosols, to our knowledge. This very low surface tension was attributed to the presence of biosurfactants, the only natural substances able to reach to such low values. <br><br> The presence of strong microbial surfactants in aerosols would be consistent with the organic fractions of exceptional cloud-nucleating efficiency recently found in aerosols, and with the correlations between algae bloom and cloud cover reported in the Southern Ocean. The results of this work also suggest that biosurfactants might be common in aerosols and thus of global relevance. If this is confirmed, a new role for microorganisms on the atmosphere and climate could be identified
    • 

    corecore