289 research outputs found

    TI6AL4V Surface Modification by Hydroxyapatite Powder Mixed Electric Discharge Machining for Medical Application

    Get PDF
    Titanium surface modification by the Hydroxyapatite (HA) mixed Electric Discharge Machining (EDM) is an alternative and promising technique to enhance the biocompatibility and to promote the biological performance in bone, which is dependent on surface properties, such as surface roughness, chemistry, and wettability. HA powder is used for the first time with electrical discharge machining to improve osteoblastic cell activity on the developed surfaces for TI6AL4V. Different HA concentrations in deionized water were tested as an experimental variable during EDM. Abrasive polishing and electrical discharge machined control surfaces without powder addition also analyzed to compare the results. The surface characteristics of analyzed samples were evaluated by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), X-Ray Diffractometry (XRD), white light interferometry, and contact angle measurements. The wettability tests suggest that the hydroxyapatite powder mixed EDM’ed surfaces shows highly hydrophilic characteristics compared the other surfaces, abrasive polished and EDM’ed without powder addition in the dielectric. The results from the MTT assay revealed that those surfaces modified using HA powder addition in distilled water dielectric liquid promoted the most significant cell attachment/growth. The results indicate that HA powder mixed EDM offers a promising method for the surface modification of biomaterials such as titanium alloys

    Ti6Al4V Surface Modification by Hydroxyapatite Powder Mixed Electrical Discharge Machining for Medical Application

    Get PDF
    Titanium surface modification by the Hydroxyapatite (HA) mixed Electrical Discharge Machining (EDM) is an alternative and promising technique to enhance the biocompatibility and to promote the biological performance in bone, which is dependent on surface properties, such as surface roughness, chemistry, and wettability. HA powder is used for the first time with electrical discharge machining to improve osteoblastic cell activity on the developed surfacesforTI6AL4V. Different HA concentrations in deionized water were tested as an experimental variable during EDM. Abrasive polishing and electrical discharge machined control surfaces without powder addition also analyzed to compare the results. The surface characteristics of analyzed samples were evaluated by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), X-Ray Diffractometry (XRD), white light interferometry, and contact angle measurements. The wettability tests suggest that the hydroxyapatite powder mixed EDM’ed surfaces shows highly hydrophilic characteristics compared the other surfaces, abrasive polished and EDM’ed without powder addition in the dielectric. The results from the MTT assay revealed that those surfaces modified using HA powder addition in distilled water dielectric liquid promoted the most significant cell attachment/growth. The results indicate that HA powder mixed EDM offers a promising method for the surface modification of biomaterials such as titanium alloys

    Powder Mixed Electrical Discharge Machining and Biocompatibility: A State of the Art Review

    Get PDF
    Electrical Discharge Machining (EDM) is a well-known process for machining of difficult to cut materials. Along with adding the powder in dielectric liquid, change in properties of machining gap results in a variety of sparks forms and lead different mechanisms under specific operational conditions during machining. The discharge models significantly differ from conventional EDM and leave its characteristics surface features. Primary studies of Powder Mixed Electrical Discharge Machining (PMEDM) focused on the understanding of material removal rate, surface quality, and tool wear rate concerning the widespread of the operational conditions evolved in the process. Then, the interactions with the powder material during discharging and the resultant surface properties impel the researcher's interest to achieve functional surfaces. In this respect, PMEDM is a significant concern in recent years as an alternative and simple production technique to obtain functional surfaces for specific needs. Nowadays, among the specific needs, production of biocompatible surfaces with the use of the technique provides a challenging opportunity to the researchers to address osseointegration issues. The study presents an introduction and review of the research work in PMEDM. The studies concerning machining efficiency, surface integrity, and generation of functional surfaces are presented and discussed in the light of current research trends. Attempts made to improve biocompatible surfaces with the use of the process also included to clarify the future trends in PMEDM

    TI6AL4V Surface Modification by Hydroxyapatite Powder Mixed Electric Discharge Machining for Medical Application

    Get PDF
    Titanium surface modification by the Hydroxyapatite (HA) mixed Electric Discharge Machining (EDM) is an alternative and promising technique to enhance the biocompatibility and to promote the biological performance in bone, which is dependent on surface properties, such as surface roughness, chemistry, and wettability. HA powder is used for the first time with electrical discharge machining to improve osteoblastic cell activity on the developed surfaces for TI6AL4V. Different HA concentrations in deionized water were tested as an experimental variable during EDM. Abrasive polishing and electrical discharge machined control surfaces without powder addition also analyzed to compare the results. The surface characteristics of analyzed samples were evaluated by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), X-Ray Diffractometry (XRD), white light interferometry, and contact angle measurements. The wettability tests suggest that the hydroxyapatite powder mixed EDM’ed surfaces shows highly hydrophilic characteristics compared the other surfaces, abrasive polished and EDM’ed without powder addition in the dielectric. The results from the MTT assay revealed that those surfaces modified using HA powder addition in distilled water dielectric liquid promoted the most significant cell attachment/growth. The results indicate that HA powder mixed EDM offers a promising method for the surface modification of biomaterials such as titanium alloys

    Sensitive parenting in Turkish ethnic minority families

    Get PDF
    1887/29813 Sensitivity is defined as a mother's ability to perceive child signals, to interpret these signals correctly, and to respond to them promptly and appropriately (Ainsworth, Bell, & Stayton, 1974) The overall aim of this dissertation is to examine beliefs about sensitive parenting and actual sensitive behaviors in Turkish ethnic minority families and factors that are related to sensitive parenting in those families. The results in Chapter 2 show that sensitivity beliefs are highly similar across and within ethnic groups of mothers and youth care professionals in the Netherlands and Turkey. In Chapter 3, the results show that sensitivity beliefs and sensitive parenting behaviors were unrelated in Dutch and Turkish-Dutch mothers. The findings presented in Chapter 4 show that ethnic identity and socialization, and religious identity and socialization are not related to sensitive parenting behaviors of Turkish-Dutch mothers. More positive attitudes toward Islamic socialization were related to lower observed maternal sensitivity. The results presented in this thesis suggest that early childhood parenting interventions focused on enhancing sensitivity might be successful in minority families. Parenting interventions could be helpful to narrow the gap between beliefs and behaviors. Parental religious orientations and belief systems should be investigated more systematically to be able to understand parenting and its effects on child development in ethnic minority familiesDevelopment Psychopathology in context: famil

    Particle Migration and Surface Modification on Ti6Al4V in SiC Powder Mixed Electrical Discharge Machining

    Get PDF
    The study examines the impact of SiC powder concentration on surface topography, particles deposition and subsurface structures in powder mixed electrical discharge machining (PMEDM) of Ti-6Al-4V-ELI work material. It was observed that low pulse currents and high suspended particle concentration in dielectric liquid enhance the material transfer mechanism in particulate form. The subsurface properties of such surfaces exhibited a distinctive and harder re-solidified layer structure that indicates a unique material transfer mechanism takes place during machining. The particles placed close to a discharge column directed towards the melted metal pool due to the sudden closure of the plasma channel. When the main discharge channel subdivided into several secondary discharges, the suspended particles in dielectric liquid stuck among the scattered sub discharges and increased the probability of penetrating into the melted metal pool at the end of a discharge. Therefore, the formation of secondary discharges favoured the improved SiC transfer in particulate form. However, increasing the pulse current deplete the material transfer mechanism in particulate form due to the inadequacy of secondary discharges

    LES-based Study of the Roughness Effects on the Wake of a Circular Cylinder from Subcritical to Transcritical Reynolds Numbers

    Get PDF
    This paper investigates the effects of surface roughness on the flow past a circular cylinder at subcritical to transcritical Reynolds numbers. Large eddy simulations of the flow for sand grain roughness of size k/D = 0.02 are performed (D is the cylinder diameter). Results show that surface roughness triggers the transition to turbulence in the boundary layer at all Reynolds numbers, thus leading to an early separation caused by the increased momentum deficit, especially at transcritical Reynolds numbers. Even at subcritical Reynolds numbers, boundary layer instabilities are triggered in the roughness sublayer and eventually lead to the transition to turbulence. The early separation at transcritical Reynolds numbers leads to a wake topology similar to that of the subcritical regime, resulting in an increased drag coefficient and lower Strouhal number. Turbulent statistics in the wake are also affected by roughness; the Reynolds stresses are larger due to the increased turbulent kinetic energy production in the boundary layer and separated shear layers close to the cylinder shoulders.We acknowledge “Red Española de Surpercomputación” (RES) for awarding us access to the MareNostrum III machine based in Barcelona, Spain (Ref. FI-2015-2-0026 and FI-2015-3-0011). We also acknowledge PRACE for awarding us access to Fermi and Marconi Supercomputers at Cineca, Italy (Ref. 2015133120). Oriol Lehmkuhl acknowledges a PDJ 2014 Grant by AGAUR (Generalitat de Catalunya). Ugo Piomelli acknowledges the support of the Natural Sciences and Engineering Research Council (NSERC) of Canada under the Discovery Grant Programme (Grant No. RGPIN-2016-04391). Ricard Borrell acknowledges a Juan de la Cierva postdoctoral grant (IJCI-2014-21034). Ivette Rodriguez, Oriol Lehmkuhl, Ricard Borrell and Assensi Oliva acknowledge Ministerio de Economía y Competitividad, Secretaría de Estado de Investigación, Desarrollo e Innovación, Spain (ref. ENE2014-60577-R).Peer ReviewedPostprint (author's final draft

    A global-scale screening of non-native aquatic organisms to identify potentially invasive species under current and future climate conditions

    Get PDF
    The threat posed by invasive non-native species worldwide requires a global approach to identify which introduced species are likely to pose an elevated risk of impact to native species and ecosystems. To inform policy, stakeholders and management decisions on global threats to aquatic ecosystems, 195 assessors representing 120 risk assessment areas across all six inhabited continents screened 819 non-native species from 15 groups of aquatic organisms (freshwater, brackish, marine plants and animals) using the Aquatic Species Invasiveness Screening Kit. This multi-lingual decision-support tool for the risk screening of aquatic organisms provides assessors with risk scores for a species under current and future climate change conditions that, following a statistically based calibration, permits the accurate classification of species into high-, medium-and low-risk categories under current and predicted climate conditions. The 1730 screenings undertaken encompassed wide geographical areas (regions, political entities, parts thereof, water bodies, river basins, lake drainage basins, and marine regions), which permitted thresholds to be identified for almost all aquatic organismal groups screened as well as for tropical, temperate and continental climate classes, and for tropical and temperate marine ecoregions. In total, 33 species were identified as posing a 'very high risk' of being or becoming invasive, and the scores of several of these species under current climate increased under future climate conditions, primarily due to their wide thermal tolerances. The risk thresholds determined for taxonomic groups and climate zones provide a basis against which area-specific or climate-based calibrated thresholds may be interpreted. In turn, the risk rankings help decision-makers identify which species require an immediate 'rapid' management action (e.g. eradication, control) to avoid or mitigate adverse impacts, which require a full risk assessment, and which are to be restricted or banned with regard to importation and/or sale as ornamental or aquarium/fishery enhancement. Decision support tools AS-ISK Hazard identification Non-native species Risk analysis Climate changepublishedVersio
    corecore