46 research outputs found

    The Rotation of Young Low-Mass Stars and Brown Dwarfs

    Full text link
    We review the current state of our knowledge concerning the rotation and angular momentum evolution of young stellar objects and brown dwarfs from a primarily observational view point. Periods are typically accurate to 1% and available for about 1700 stars and 30 brown dwarfs in young clusters. Discussion of angular momentum evolution also requires knowledge of stellar radii, which are poorly known for pre-main sequence stars. It is clear that rotation rates at a given age depend strongly on mass; higher mass stars (0.4-1.2 M⊙_\odot) have longer periods than lower mass stars and brown dwarfs. On the other hand, specific angular momentum is approximately independent of mass for low mass pre-main sequence stars and young brown dwarfs. A spread of about a factor of 30 is seen at any given mass and age. The evolution of rotation of solar-like stars during the first 100 Myr is discussed. A broad, bimodal distribution exists at the earliest observable phases (∌\sim1 Myr) for stars more massive than 0.4 M⊙_\odot. The rapid rotators (50-60% of the sample) evolve to the ZAMS with little or no angular momentum loss. The slow rotators continue to lose substantial amounts of angular momentum for up to 5 Myr, creating the even broader bimodal distribution characteristic of 30-120 Myr old clusters. Accretion disk signatures are more prevalent among slowly rotating PMS stars, indicating a connection between accretion and rotation. Disks appear to influence rotation for, at most, ∌\sim5 Myr, and considerably less than that for the majority of stars. If the dense clusters studied so far are an accurate guide, then the typical solar-like star may have only ∌\sim1 Myr for this task. It appears that both disk interactions and stellar winds are less efficient at braking these objects.Comment: Review chapter for Protostars and Planets V. 15 page and 8 figure

    IR diagnostics of embedded jets: velocity resolved observations of the HH34 and HH1 jets

    Full text link
    We present VLT-ISAAC medium resolution spectroscopy of the HH34 and HH1 jets. Our aim is to derive the kinematics and the physical parameters and to study how they vary with jet velocity. We use several important diagnostic lines such as [FeII] 1.644um, 1.600um and H2 2.122um. In the inner jet region of HH34 we find that both the atomic and molecular gas present two components at high and low velocity. The [FeII] LVC in HH34 is detected up to large distances from the source (>1000 AU), at variance with TTauri jets. In H2 2.122um, the LVC and HVC are spatially separated. We detect, for the first time, the fainter red-shifted counterpart down to the central source. In HH1, we trace the jet down to ~1" from the VLA1 driving source: the kinematics of this inner region is again characterised by the presence of two velocity components, one blue-shifted and one red-shifted with respect to the source LSR velocity. In the inner HH34 jet region, ne increases with decreasing velocity. Up to ~10" from the driving source, and along the whole HH1 jet an opposite behaviour is observed instead, with ne increasing with velocity. In both jets the mass flux is carried mainly by the high-velocity gas. A comparison between the position velocity diagrams and derived electron densities with models for MHD jet launching mechanisms has been performed for HH34. While the kinematical characteristics of the line emission at the jet base can be, at least qualitatively, reproduced by both X-winds and disc-wind models, none of these models can explain the extent of the LVC and the dependence of electron density with velocity that we observe. It is possible that the LVC in HH34 represents gas not directly ejected in the jet but instead denser ambient gas entrained by the high velocity collimated jet.Comment: A&A accepte

    HST FUV C IV observations of the hot DG Tauri jet

    Full text link
    Protostellar jets are tightly connected to the accretion process and regulate the angular momentum balance of accreting star-disk systems. The DG Tau jet is one of the best-studied protostellar jets and contains plasma with temperatures ranging over three orders of magnitude within the innermost 50 AU of the jet. We present new Hubble Space Telescope (HST) far ultraviolet (FUV) long-slit spectra spatially resolving the C IV emission (T~1e5 K) from the jet for the first time, and quasi-simultaneous HST observations of optical forbidden emission lines ([O I], [N II], [S II] and [O III]) and fluorescent H2 lines. The C IV emission peaks at 42 AU from the stellar position and has a FWHM of 52 AU along the jet. Its deprojected velocity of around 200 km/s decreases monotonically away from the driving source. In addition, we compare our HST data with the X-ray emission from the DG Tau jet. We investigate the requirements to explain the data by an initially hot jet compared to local heating. Both scenarios indicate a mass loss by the T~1e5 K jet of ~1e-9 Msun/year, i.e., between the values for the lower temperature jet (T~1e4 K) and the hotter X-ray emitting part (T>1e6 K). However, a simple initially hot wind requires a large launching region (~1 AU), and we therefore favor local heating.Comment: 5 pages, 2 figures, accepted by A&A letter

    On the ALMA observability of nascent massive multiple systems formed by gravitational instability

    Get PDF
    This is the final version. Available from Oxford University Press via the DOI in this record.Massive young stellar object (MYSOs) form during the collapse of high-mass pre-stellar cores, where infalling molecular material is accreted through a centrifugally-balanced accretion disc that is subject to efficient gravitational instabilities. In the resulting fragmented accretion disc of the MYSO, gaseous clumps and low-mass stellar companions can form, which will influence the future evolution of massive protostars in the Hertzsprung-Russell diagram. We perform dust continuum radiative transfer calculations and compute synthetic images of disc structures modelled by the gravito-radiation-hydrodynamics simulation of a forming MYSO, in order to investigate the Atacama Large Millimeter/submillimeter Array (ALMA) observability of circumstellar gaseous clumps and forming multiple systems. Both spiral arms and gaseous clumps located at ~a few 100 au from the protostar can be resolved by interferometric ALMA Cycle 7 C43-8 and C43-10 observations at band 6 (1.2 mm), using a maximal 0.015" beam angular resolution and at least 10-30 min exposure time for sources at distances of 1-2 kpc. Our study shows that substructures are observable regardless of their viewing geometry or can be inferred in the case of an edge-viewed disc. The observation probability of the clumps increases with the gradually increasing efficiency of gravitational instability at work as the disc evolves. As a consequence, large discs around MYSOs close to the zero-age-main-sequence line exhibit more substructures than at the end of the gravitational collapse. Our results motivate further observational campaigns devoted to the close surroundings of the massive protostars S255IR-NIRS3 and NGC 6334I-MM1, whose recent outbursts are a probable signature of disc fragmentation and accretion variability.European Research Council (ERC)Science and Technology Facilities Council (STFC)Russian Science FoundationSwiss National Science Foundatio

    The kinematic relationship between disk and jet in the DG Tauri system

    Get PDF
    We present high angular resolution millimeter wavelength continuum and 13CO(2-1) observations of the circumstellar disk surrounding the TTauri star DG Tauri. We show that the velocity pattern in the inner regions of the disk is consistent with Keplerian rotation about a central 0.67 Msun star. The disk rotation is also consistent with the toroidal velocity pattern in the initial channel of the optical jet, as inferred from HST spectra of the first de-projected 100 AU from the source. Our observations support the tight relationship between disk and jet kinematics postulated by the popular magneto-centrifugal models for jet formation and collimation.Comment: 4 pages, A&A Letter accepte

    [OI]63micron jets in class 0 sources detected by Herschel

    Get PDF
    We present Herschel PACS mapping observations of the [OI]63 micron line towards protostellar outflows in the L1448, NGC1333-IRAS4, HH46, BHR71 and VLA1623 star forming regions. We detect emission spatially resolved along the outflow direction, which can be associated with a low excitation atomic jet. In the L1448-C, HH46 IRS and BHR71 IRS1 outflows this emission is kinematically resolved into blue- and red-shifted jet lobes, having radial velocities up to 200 km/s. In the L1448-C atomic jet the velocity increases with the distance from the protostar, similarly to what observed in the SiO jet associated with this source. This suggests that [OI] and molecular gas are kinematically connected and that this latter could represent the colder cocoon of a jet at higher excitation. Mass flux rates (\.Mjet_{jet}(OI)) have been measured from the [OI]63micron luminosity adopting two independent methods. We find values in the range 1-4 10−7^{-7} Mo/yr for all sources but HH46, for which an order of magnitude higher value is estimated. \.Mjet_{jet}(OI) are compared with mass accretion rates (\.Macc_{acc}) onto the protostar and with \.Mjet_{jet} derived from ground-based CO observations. \.Mjet_{jet}(OI)/\.Macc_{acc} ratios are in the range 0.05-0.5, similar to the values for more evolved sources. \.Mjet_{jet}(OI) in HH46 IRS and IRAS4A are comparable to \.Mjet_{jet}(CO), while those of the remaining sources are significantly lower than the corresponding \.Mjet_{jet}(CO). We speculate that for these three sources most of the mass flux is carried out by a molecular jet, while the warm atomic gas does not significantly contribute to the dynamics of the system.Comment: 37 pages and 12 figures, accepted for publication on Astrophysical Journa

    The near-infrared excitation of the HH211 protostellar outflow

    Full text link
    The protostellar outflow HH211 is of considerable interest since it is extremely young and highly collimated. Here, we explore the outflow through imaging and spectroscopy in the near-infrared to determine if there are further diagnostic signatures of youth. We confirm the detection of a near-infrared continuum of unknown origin. We propose that it is emitted by the driving millimeter source, escapes the core through tunnels, and illuminates features aligning the outflow. Narrow-band flux measurements of these features contain an unusually large amount of continuum emission. [Fe II] emission has been detected and is restricted to isolated condensations. However, the characteristics of vibrational excitation of molecular hydrogen resemble those of older molecular outflows. We attempt to model the ordered structure of the western outflow as a series of shocks, finding that bow shocks with J-type dissociative apices and C-type flanks are consistent. Moreover, essentially the same conditions are predicted for all three bows except for a systematic reduction in speed and density with distance from the driving source. We find increased K-band extinctions in the bright regions as high as 2.9 magnitudes and suggest that the bow shocks become visible where the outflow impacts on dense clumps of cloud material. We propose that the outflow is carved out by episodes of pulsating jets. The jets, driven by central explosive events, are responsible for excavating a central tunnel through which radiation temporarily penetrates.Comment: 12 pages, 9 figure

    POISSON project - I - Emission lines as accretion tracers in young stellar objects: results from observations of Chamaeleon I and II sources

    Full text link
    We present the results of the analysis of LR optical-NIR spectra (0.6-2.4 um) of a sample 47 YSOs in the ChaI and II star-forming clouds. These data are part of the POISSON project (Protostellar Optical-Infrared Spectral Survey on NTT). The aim is to determine the accretion luminosity (Lacc) and mass accretion rate (Macc) of the sources through the analysis of the detected emission features. We also aim at verifying the reliability and consistency of the existing empirical relationships connecting emission line luminosity and Lacc. We employ five tracers (OI-6300A, Ha, CaII-8542A, Pab, and Brg) to derive the accretion luminosity. The tracers provide Lacc values showing different scatters when plotted as a function of L*. The Brg seems to be the most reliable, because it gives the minimum Lacc dispersion over the entire range of L*, whereas the other tracers provide much more scattered Lacc values, which are not expected for our homogeneous sample. The comparison between Lacc(Brg) and Lacc obtained from the other tracers also shows systematic differences among the empirical relationships. These may probably be ascribed to different excitation mechanisms contributing to the line emission, which may vary between our sample and those where the relationships were calibrated. Adopting the Lacc derived from Brg, we find Lacc=0.1L*-1L* for all sources, and Macc of the order of 10^-7-10^-9 Msun/yr. The Macc derived in ChaI are proportional to M*^2, as found in other low-mass star-forming regions. The discrepancies observed in the case of Lacc(Brg) and Lacc(Pab) can be related to different intrinsic Pab/Brg, ratios. The derived ratios show the existence of two different emission modalities, one that agrees with predictions of both wind and accretion models, the other suggesting optically thick emission from relatively small regions (10^21-10^22 cm^-3) with gas at low temperatures (<4000K).Comment: 22 pages, 8 figures, accepted for publication in A&A; institute affiliations and typos correcte

    Radio outburst from a massive (proto)star. When accretion turns into ejection

    Get PDF
    Context. Recent observations of the massive young stellar object S255 NIRS 3 have revealed a large increase in both methanol maser flux density and IR emission, which have been interpreted as the result of an accretion outburst, possibly due to instabilities in a circumstellar disk. This indicates that this type of accretion event could be common in young/forming early-type stars and in their lower mass siblings, and supports the idea that accretion onto the star may occur in a non-continuous way. Aims. As accretion and ejection are believed to be tightly associated phenomena, we wanted to confirm the accretion interpretation of the outburst in S255 NIRS 3 by detecting the corresponding burst of the associated thermal jet. Methods. We monitored the radio continuum emission from S255 NIRS 3 at four bands using the Karl G. Jansky Very Large Array. The millimetre continuum emission was also observed with both the Northern Extended Millimeter Array of IRAM and the Atacama Large Millimeter/submillimeter Array. Results. We have detected an exponential increase in the radio flux density from 6 to 45 GHz starting right after July 10, 2016, namely about 13 months after the estimated onset of the IR outburst. This is the first ever detection of a radio burst associated with an IR accretion outburst from a young stellar object. The flux density at all observed centimetre bands can be reproduced with a simple expanding jet model. At millimetre wavelengths we infer a marginal flux increase with respect to the literature values and we show this is due to free-free emission from the radio jet. Abridged.Comment: 14 pages, 9 figures, 3 tables, accepted by Astronomy & Astrophysic
    corecore