1,143 research outputs found

    On entanglement evolution across defects in critical chains

    Get PDF
    We consider a local quench where two free-fermion half-chains are coupled via a defect. We show that the logarithmic increase of the entanglement entropy is governed by the same effective central charge which appears in the ground-state properties and which is known exactly. For unequal initial filling of the half-chains, we determine the linear increase of the entanglement entropy.Comment: 11 pages, 5 figures, minor changes, reference adde

    Oxide mediated spectral shifting in aluminum resonant optical antennas

    Get PDF
    As a key feature among metals showing good plasmonic behavior, aluminum extends the spectrum of achievable plasmon resonances of optical antennas into the deep ultraviolet. Due to degradation, a native oxide layer gives rise to a metal-core/oxide-shell nanoparticle and influences the spectral resonance peak position. In this work, we examine the role of the underlying processes by applying numerical nanoantenna models that are experimentally not feasible. Finite-difference time-domain simulations are carried out for a large variety of elongated single-arm and two-arm gap nanoantennas. In a detailed analysis, which takes into account the varying surface-to-volume ratio, we show that the overall spectral shift toward longer wavelengths is mainly driven by the higher index surrounding material rather than by the decrease of the initial aluminum volume. In addition, we demonstrate experimentally that this shifting can be minimized by an all-inert fabrication and subsequent proof-of-concept encapsulation. © 2015 Optical Society of America

    Time Evolution within a Comoving Window: Scaling of signal fronts and magnetization plateaus after a local quench in quantum spin chains

    Full text link
    We present a modification of Matrix Product State time evolution to simulate the propagation of signal fronts on infinite one-dimensional systems. We restrict the calculation to a window moving along with a signal, which by the Lieb-Robinson bound is contained within a light cone. Signal fronts can be studied unperturbed and with high precision for much longer times than on finite systems. Entanglement inside the window is naturally small, greatly lowering computational effort. We investigate the time evolution of the transverse field Ising (TFI) model and of the S=1/2 XXZ antiferromagnet in their symmetry broken phases after several different local quantum quenches. In both models, we observe distinct magnetization plateaus at the signal front for very large times, resembling those previously observed for the particle density of tight binding (TB) fermions. We show that the normalized difference to the magnetization of the ground state exhibits similar scaling behaviour as the density of TB fermions. In the XXZ model there is an additional internal structure of the signal front due to pairing, and wider plateaus with tight binding scaling exponents for the normalized excess magnetization. We also observe parameter dependent interaction effects between individual plateaus, resulting in a slight spatial compression of the plateau widths. In the TFI model, we additionally find that for an initial Jordan-Wigner domain wall state, the complete time evolution of the normalized excess longitudinal magnetization agrees exactly with the particle density of TB fermions.Comment: 10 pages with 5 figures. Appendix with 23 pages, 13 figures and 4 tables. Largely extended and improved versio

    The components of empirical multifractality in financial returns

    Full text link
    We perform a systematic investigation on the components of the empirical multifractality of financial returns using the daily data of Dow Jones Industrial Average from 26 May 1896 to 27 April 2007 as an example. The temporal structure and fat-tailed distribution of the returns are considered as possible influence factors. The multifractal spectrum of the original return series is compared with those of four kinds of surrogate data: (1) shuffled data that contain no temporal correlation but have the same distribution, (2) surrogate data in which any nonlinear correlation is removed but the distribution and linear correlation are preserved, (3) surrogate data in which large positive and negative returns are replaced with small values, and (4) surrogate data generated from alternative fat-tailed distributions with the temporal correlation preserved. We find that all these factors have influence on the multifractal spectrum. We also find that the temporal structure (linear or nonlinear) has minor impact on the singularity width Δα\Delta\alpha of the multifractal spectrum while the fat tails have major impact on Δα\Delta\alpha, which confirms the earlier results. In addition, the linear correlation is found to have only a horizontal translation effect on the multifractal spectrum in which the distance is approximately equal to the difference between its DFA scaling exponent and 0.5. Our method can also be applied to other financial or physical variables and other multifractal formalisms.Comment: 6 epl page

    On the relation between entanglement and subsystem Hamiltonians

    Full text link
    We show that a proportionality between the entanglement Hamiltonian and the Hamiltonian of a subsystem exists near the limit of maximal entanglement under certain conditions. Away from that limit, solvable models show that the coupling range differs in both quantities and allow to investigate the effect.Comment: 7 pages, 2 figures version2: minor changes, typos correcte

    Entanglement entropy of two disjoint blocks in XY chains

    Full text link
    We study the Renyi entanglement entropies of two disjoint intervals in XY chains. We exploit the exact solution of the model in terms of free Majorana fermions and we show how to construct the reduced density matrix in the spin variables by taking properly into account the Jordan-Wigner string between the two blocks. From this we can evaluate any Renyi entropy of finite integer order. We study in details critical XX and Ising chains and we show that the asymptotic results for large blocks agree with recent conformal field theory predictions if corrections to the scaling are included in the analysis correctly. We also report results in the gapped phase and after a quantum quench.Comment: 34 pages, 11 figure

    Energy flux distribution in a two-temperature Ising model

    Full text link
    The nonequilibrium steady state of an infinite-range Ising model is studied. The steady state is obtained by dividing the spins into two groups and attaching them to two heat baths generating spin flips at different temperatures. In the thermodynamic limit, the resulting dynamics can be solved exactly, and the probability flow in the phase space can be visualized. We can calculate the steady state fluctuations far from equilibrium and, in particular, we find the exact probability distribution of the energy current in both the high- and low-temperature phase.Comment: 19 pages, 4 figure

    Time evolution of 1D gapless models from a domain-wall initial state: SLE continued?

    Full text link
    We study the time evolution of quantum one-dimensional gapless systems evolving from initial states with a domain-wall. We generalize the path-integral imaginary time approach that together with boundary conformal field theory allows to derive the time and space dependence of general correlation functions. The latter are explicitly obtained for the Ising universality class, and the typical behavior of one- and two-point functions is derived for the general case. Possible connections with the stochastic Loewner evolution are discussed and explicit results for one-point time dependent averages are obtained for generic \kappa for boundary conditions corresponding to SLE. We use this set of results to predict the time evolution of the entanglement entropy and obtain the universal constant shift due to the presence of a domain wall in the initial state.Comment: 27 pages, 10 figure

    Developing an intervention to facilitate family communication about inherited genetic conditions, and training genetic counsellors in its delivery.

    Get PDF
    Many families experience difficulty in talking about an inherited genetic condition that affects one or more of them. There have now been a number of studies identifying the issues in detail, however few have developed interventions to assist families. The SPRinG collaborative have used the UK Medical Research Council's guidance on Developing and Evaluating Complex Interventions, to work with families and genetic counsellors (GCs) to co-design a psycho-educational intervention to facilitate family communication and promote better coping and adaptation to living with an inherited genetic condition for parents and their children (<18 years). The intervention is modelled on multi-family discussion groups (MFDGs) used in psychiatric settings. The MFDG was developed and tested over three phases. First focus groups with parents, young people, children and health professionals discussed whether MFDG was acceptable and proposed a suitable design. Using evidence and focus group data, the intervention and a training manual were developed and three GCs were trained in its delivery. Finally, a prototype MFDG was led by a family therapist and co-facilitated by the three GCs. Data analysis showed that families attending the focus groups and intervention thought MFDG highly beneficial, and the pilot sessions had a significant impact on their family' functioning. We also demonstrated that it is possible to train GCs to deliver the MFDG intervention. Further studies are now required to test the feasibility of undertaking a definitive randomised controlled trial to evaluate its effectiveness in improving family outcomes before implementing into genetic counselling practice.The National Institute of Health Research funded the study but any views expressed do not necessarily reflect those of the Authority. Funded by NIHR reference number: RP-DG-1211-10015

    Entanglement Hamiltonians in 1D free lattice models after a global quantum quench

    Get PDF
    We study the temporal evolution of the entanglement Hamiltonian of an interval after a global quantum quench in free lattice models in one spatial dimension. In a harmonic chain we explore a quench of the frequency parameter. In a chain of free fermions at half filling we consider the evolution of the ground state of a fully dimerised chain through the homogeneous Hamiltonian. We focus on critical evolution Hamiltonians. The temporal evolutions of the gaps in the entanglement spectrum are analysed. The entanglement Hamiltonians in these models are characterised by matrices that provide also contours for the entanglement entropies. The temporal evolution of these contours for the entanglement entropy is studied, also by employing existing conformal field theory results for the semi-infinite line and the quasi-particle picture for the global quench
    corecore