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Entanglement hamiltonians in 1D free lattice models
after a global quantum quench
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Abstract. We study the temporal evolution of the entanglement hamiltonian of an
interval after a global quantum quench in free lattice models in one spatial dimension.
In a harmonic chain we explore a quench of the frequency parameter. In a chain of
free fermions at half filling we consider the evolution of the ground state of a fully
dimerised chain through the homogeneous hamiltonian. We focus on critical evolution
hamiltonians. The temporal evolutions of the gaps in the entanglement spectrum are
analysed. The entanglement hamiltonians in these models are characterised by matrices
that provide also contours for the entanglement entropies. The temporal evolution
of these contours for the entanglement entropy is studied, also by employing existing
conformal field theory results for the semi-infinite line and the quasi-particle picture for
the global quench.
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1. Introduction

The entanglement associated to the state of a quantum system and to a bipartition of its
Hilbert space has attracted a lot of attention during the last decade. Many techniques
have been developed to quantify entanglement in quantum many-body systems, quantum
field theories and quantum gravity [1-7].

Given a bipartition H = H 4 ® Hp of the Hilbert space and a state characterised by
the density matrix p, the reduced density matrix associated to H 4 is pa = Try,p. In this
manuscript we focus on bipartitions of Hilbert spaces that come from spatial bipartitions;
hence A denotes a spatial region and B its complement. [8]. The reduced density matrix
is a positive semi-definite hermitian operator normalised to Try,pa = 1 (hereafter the
trace will be always over H 4). These properties allow to write p4 as

—Ka

Z4

e

pa = (1)
where the hermitian operator K4 is the entanglement hamiltonian (also called modular
hamiltonian) and Z4 = Tr(e %4).

The moments of the reduced density matrix Trp'y, that are parameterised by the
integer power n > 2, provide the Rényi entropies 51(4”) = ﬁ

entropy is defined as the Von Neumann entropy of the reduced density matrix Sy =

log(Trp"). The entanglement

—Tr(palogpa). A very important property of the Rényi entropies is that Sgn) — Sa as
n — 1. This limit can be very complicated because it requires to perform an analytic
continuation in n. The entanglement entropies are Sg") for n > 1, where SS) = Sy is
assumed. These scalar quantities depend only on the eigenvalues of p4 (the entanglement
spectrum) [9]; hence the entanglement hamiltonian contains more information about the
entanglement of the bipartition with respect to the corresponding entanglement entropies.

In quantum field theories, Bisognano and Wichmann found the explicit expression of
the entanglement hamiltonian of half space through the stress tensor of the model [10].
In conformal field theories (CFT), this formula has been employed as the starting point
to obtain entanglement hamiltonians for other interesting configurations [11-18]. Crucial
tools in this analysis are the methods developed for CFT with boundary [19]. In quantum
gravity models in the context of the gauge/gravity correspondence, elaborating on the
holographic prescription for the entanglement entropy [20,21], also the entanglement
hamiltonian has been explored [22].

In many body quantum systems, entanglement hamiltonians have been studied for
bosonic Gaussian states in harmonic lattices and for fermionic Gaussian states in lattice
models of free fermions [1,2,23-34]. The entanglement hamiltonian is a quadratic operator
in these free models; hence it is fully characterised by a matrix. The results available in
the literature are mostly based on numerical analysis of this matrix. Analytic expressions
for the entanglement hamiltonian in the thermodynamic limit have been obtained in [31]
for the static configuration where A is a single block in the infinite chain of free fermions
in the ground state. The matrix characterising this entanglement hamiltonian at half
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filling has non vanishing odd diagonals at any allowed distance from the main diagonal.
The continuum limit of this entanglement hamiltonian has been studied in [34] and the
expected CFT result of [11,12] has been derived through this method. In spin chain
systems, entanglement hamiltonians have been studied in [35].

The entanglement spectrum is another very insightful quantity to consider in order
to get insights about the bipartite entanglement. It has been explored by employing both
CFT methods [15,36] and numerical techniques [37,38]. The entanglement spectrum is
not enough to construct the entanglement hamiltonian.

The contours for the entanglement entropies are simpler to obtain with respect to
the entanglement hamiltonian and they are not fully determined by the entanglement
spectrum as well. The contours for the entanglement entropies are positive functions on
the subsystem A such that their integral over A provides the entanglement entropies. The
aim of these scalar quantities is to describe the contribution of the various sites in A to the
entanglement entropies of the bipartition and the entanglement spectrum is not enough
to determine them. In free lattice models, contours for the entanglement entropies have
been constructed and numerical analysis have been performed [16,39-42]. For some static
configurations described by CFT, they are related to the corresponding entanglement
hamiltonians [42]. Density functions for the entanglement entropy have been explored
also in [43]. The contours for the entanglement entropies are special density functions
because further constraints are required for them [40,42]. Nonetheless, a complete list
of properties that allows to select a unique contour for the entanglement entropies is not
known.

The bipartite entanglement has been studied during the last decade also to explore the
out of equilibrium dynamics of quantum systems. Global quantum quenches are insightful
processes where the system is prepared in the ground state |1)y) of a translationally
invariant hamiltonian and at ¢ = 0 a sudden change modifies the hamiltonian keeping
the translation invariance. The non trivial dynamics is due to the fact that the initial
state |¢) is not an eigenvector of the hamiltonian determining its unitary evolution.
The temporal evolutions of various quantities after global quantum quenches and also
other kinds of quenches have been studied in quantum field theories, in many-body
systems on the lattice [44-61] and also in quantum gravity through the gauge/gravity
correspondence [21,62] (see the reviews [63-65] for an extensive list of references).

In this manuscript we study the temporal evolution of the entanglement hamiltonian
and of a contour for the entanglement entropy after a global quantum quench in free
lattice models. For simplicity, we consider, in one spatial dimension, a harmonic chain
and a chain of free fermions. In the harmonic chain, we explore a quench of the frequency
parameter such that the unitary evolution is governed by the massless hamiltonian. In
the chain of free fermions, we consider the global quench introduced in [1,49], where
the system is prepared in the ground state of a fully dimerised chain while the evolution
hamiltonian is fully homogeneous.

This manuscript is organised as follows. In §2 and §3 we discuss the construction of
the entanglement hamiltonians and of the contours for the entanglement entropies in the
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models of interest. In §4 we provide a naive formula for the contour function obtained
through CFT results. The numerical results for the harmonic chain and for the chain of
free fermions are described in §5 and §6 respectively. In §7 we draw some conclusions.
The Appendices A, B, C and D contain technical details about some issues discussed in
the main text.

2. Harmonic lattices

In this section we review the construction of the matrix characterising the entanglement
hamiltonian for Gaussian states in harmonic lattices. We focus on one dimensional chains,
but the discussion can be easily extended to harmonic lattices in higher dimensions.

The hamiltonian of the harmonic chain with nearest neighbour spring-like interaction
reads

2
H= ZO (Lm P; + L d; + g<ﬁi+1 - qu‘)2) (2)
where L is the number of lattice sites and the hermitian operators ¢; and p; satisfy the
canonical commutation relations [¢;, ¢;] = [pi,p;] = 0 and [§;, p;] = 1d;; (throughout this
manuscript & = 1). The boundary conditions, that are crucial to determine the expression
of the correlators, do not influence explicitly the following discussion. By arranging
the position and momentum operators into the vector # = (¢1,...,qr,p1,--.,pr)", the

canonical commutation relations can be written in the form [r;,7;] = iJ;;, being J the

JE(_Ol (1)) (3)

where 1 is the L x L identity matrix and 0 is the L X L matrix made by zeros. Notice
that J* = —J and J? = —1. We also need that J'(a @& b)J = b & a.

The linear transformations # — # = S# preserving the canonical commutation

standard symplectic matrix

relations define the real symplectic group Sp(L), made by the real 2L x 2 matrices S that
satisfy the relation SJS* = J [66]. Given a symplectic matrix S, we have that det(S) = 1,
St € Sp(L) and S~ = JS*J~!. The above observations imply that S~ = J*SJ, where
we have adopted the notation M~* = (M*)~1.

By employing a canonical transformation, the hamiltonian (2) can be written as the
hamiltonian of a free boson with mass w discretised on a lattice with spacing a = \/m/x.
This implies that we can set m = k = 1 without loss of generality. The continuum limit
of this model gives the free scalar boson with mass w in two spacetime dimensions. In the
massless regime, this quantum field theory is a conformal field theory (CFT) with central
charge ¢ = 1.

In this manuscript we focus on Gaussian states of (2), which are completely
characterised by the correlators (7;) (first moments) and (7; 7;) (second moments). Since
a shift of the first moments corresponds to a unitary transformation that preserves the
Gaussian nature of the state, let us consider Gaussian states having (7;) = 0. Thus, the
second moments fully describe these states and they can be collected into the 2L x 2L



Entanglement hamiltonians in 1D free lattice models after a global quantum quench 6

covariance matrix v = Re(# '), which is a real, symmetric and positive definite matrix
[5,6,39,66,67]. A canonical transformation # — # = S7 characterised by the symplectic
matrix S induces the transformation v — 7' = SvS* on the covariance matrix. The
covariance matrix of a pure Gaussian state satisfies the relation (iJ~)? = i 1.

Given the harmonic chain (2) in a Gaussian state p characterised by the covariance
matrix v, let us introduce a bipartition of the Hilbert space H = H 4 ® Hp corresponding
to a spatial bipartition A U B. The reduced density matrix py = Try,p associated to
the spatial subsystem A characterises a mixed state also when the whole system A U B
is in a pure state. For the harmonic chain (2) and its higher dimensional generalisations,
pa remains Gaussian for any choice of A. This implies that p, is fully described by
the reduced covariance matrix v4 = Re(7 #')|4, obtained by extracting from 7 of the
entire system the rows and the columns corresponding to the lattice sites belonging to
the subsystem A. The reduced covariance matrix v, is real, symmetric and positive
definite. In the numerical analysis of this manuscript we consider only the case where
A is an interval made by /¢ sites, hence 7v4 is a 2¢ x 2¢ matrix. Nonetheless, the
considerations reported in this section hold for a generic number of spatial dimensions,
once /¢ is understood as the number of sites in the subsystem A.

2.1. Entanglement hamiltonian

In the harmonic chain, the entanglement hamiltonian K 4 corresponding to a region A
introduced in (1) is a quadratic hermitian operator, hence it can be written as [2, 23]

A~

KA:%ﬁtHAﬁ f:<g> (4)
where the 2¢ dimensional vector 7 collects the position and the momentum operators ¢;
and p; with ¢ € A. The matrix H 4, that fully determines the entanglement hamiltonian
in (4), is real, symmetric and positive definite. This guarantees that K A is hermitian, like
the operators ¢; and p;. In the following we often call H,4 the entanglement hamiltonian
matrix.

A very important tool employed to quantify the bipartite entanglement in harmonic
lattices is the Williamson’s theorem [68-70]. It holds for any real, symmetric and positive
matrix having even order, but in our analysis we employ it for the 2¢ x 2¢ matrices 74
and H,4. Considering the reduced covariance matrix v, first, the Williamson’s theorem
guarantees that we can construct a symplectic matrix W € Sp(¢) such that

Y4 = W'D, W (5)

where Dq = D @ D and the diagonal matrix D = diag(oy, . .., 0¢) collects the symplectic
eigenvalues g, > 0 of y4. The symplectic eigenvalues are uniquely determined up to
permutation and constitute the symplectic spectrum. We will refer to the r.h.s. of (5)
as the Williamson’s decomposition of v4. We will choose a decreasing ordering for the
symplectic eigenvalues.
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The symplectic spectrum of y4 provides the entanglement entropy S4 and the Rényi
entropies 31(4") as follows [1,5,6,25,39,67]

¢ ¢
Sa= Z s(ox) 31(4”) = Z Sn(ok) (6)
k=1 k=1
where s(y) and s,(y) are the analytic functions given by

s(y) = (y +1/2)log(y + 1/2) — (y — 1/2) log(y — 1/2) (7)

and

sn(y) = — log [(y+1/2)" = (y = 1/2)"]. (8)

The parameter n is an integer n > 2. Performing an analytic continuation of this integer
parameter, the entanglement entropy S4 can be obtained as Sﬁll) = lim,,_,; Sl(f), that is
the replica limit for the entanglement entropy. The scalar quantities SXZ) with n > 1 are
usually called entanglement entropies, assuming that sV =g A

The symplectic spectrum of 7,4 is obtained by diagonalising (iJv4)? or (iyaJ)%.
Indeed, by employing that W is symplectic and that J*D".J = D’ for any non negative
integer r, it is not difficult to realise that

—~ —~

(iJya)? =W 'D2W (iya)? =W DWW 9)

where we have introduced

W=J'WJ=Ww" (10)

Being W W' = W' W = 1, the matrix W is not orthogonal.
The Williamson’s theorem can be employed to decompose also the entanglement
hamiltonian matrix H,4 defined in (4), namely

Hy=W, EWy (11)

where Wy € Sp({) and &g = EDE, being € = diag(ey, ..., ) the symplectic spectrum of
H 4. The symplectic eigenvalues ¢, are often called single particle entanglement energies.
The symplectic spectrum of H 4 is related to the symplectic spectrum of v, as follows

D+1/2
E = 2arccoth(2D) = log(D_—w> : (12)
Being £ and D diagonal matrices, we have g, = 2 arccoth(20y,) = log[(ox+1/2)/(0x—1/2)],
whose inverse reads o, = coth(e;/2)/2 = [(e** +1)/(e** — 1)]/2 for 1 < k < {. Let us
remark that the uncertainty principle leads to o > 1/2, and this implies that g, > 0.

The determinant of H,4 is determined only by the symplectic spectrum. Indeed, by
employing the Williamson’s decomposition (11) and the fact that a symplectic matrix has
determinant equal to one, one finds det Hy = det &, = Hi:l £2.
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In [28] the entanglement hamiltonian matrix H,4 has been expressed in terms of the
reduced covariance matrix v4 as follows

Hy = 2iJarccoth(2iy4J) = 2iarccoth(2iJv4) J . (13)

This relation can be obtained from (11) by employing (12) and

Wy =W (14)

where W is given by (10). The details of this derivation have been reported in the
Appendix A. Notice that, if B = A7'(A @ A)A for some diagonal matrix A, then also
B = (J'A)"Y(A@ A)(J'A). This implies that we can replace W with J*W, —W or —J'W
in (9), and similarly for W. From (5) and (11), one observes that v4 and H4 are not
affected by this ambiguity.

The expression (13) can be also written as
HA:Jt")/AJh( (i")/AJ)z) :h( (iJ’}/A)Q)Jt’yAJ (15)

where we have introduced the function h(y) =y~ log[(y+1/2)/(y—1/2)]. The equivalence
between (15) and (13) is shown in Appendix A. Notice that the expression (13) or its
equivalent form (15) cannot be applied for pure states, where (2iJ7)? = 1.

By employing (5), (10), (11) and (14), one finds y4 Ha = W'(D, gd)W and its
transpose Hays = W' (D, &)W. This implies Tr((Hava)") = 2> (o)™ for n > 1.
Thus, for a generic function f(x) we have Tr(f(Hava)) = Tr(f(ya Ha)) =2, f(orer).

The above discussion tells that the entanglement hamiltonian matrix H, can be
obtained from 4 either through the explicit expressions in (11) and (13) or by finding
the symplectic spectrum of the reduced covariance matrix v4 and the symplectic matrix
W first and then use (11), (12) and (14). In the latter procedure, the needed data can
be obtained through a standard diagonalisation, as indicates in (9). In our numerical
analysis, this step is not straightforward because the matrix (iJy4)? to diagonalise is
not symmetric. In the Appendix B we describe the procedure that we have employed to
construct the symplectic matrix W, that is based on the Cholesky decomposition of 4.

The Williamson’s theorem (11) and the relation (14) allow to write entanglement
hamiltonian (4) in the following diagonal form

~ 1 N &
Ra=55863 sz§z<f') (16)

where the hermitian operators q; and p, collected in the vector s satisfy the canonical

commutation relations, being W symplectic. It is convenient to introduce the annihilation
~t ~ A A N

and creation operators b = (by ... by bl ... b}) as follows

~ q ip 1
0's b= BT IPe (1 1) (17)

b -
NG V2 \ il il
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where the 2¢ x 2¢ matrix 2 is unitary. Since Q7 '(iJ)Q~" = J, it is straightforward to
check that [b;, b;] = J;;. In terms of these operators, the entanglement hamiltonian (16)

becomes ,
= /0 &£ Ay 1
K= b b=> e.(blbr+= ). 18
SRR (L) &
This operator has a well known form; hence it can be treated in the standard way.
By introducing the eigenstates |ng) of the occupation number operator b;bk, whose
eigenvalues are given by non negative integers ny, the reduced density matrix (1) can
be written through the projectors |n) = @\ _, |nx) as follows [71]

e~ Tt ek (ni+1/2)

pa= Y e In){n] = 3" Al (19)

n

where ny is the k-th element of the /-dimensional vector m. The coefficients \,, provide
the entanglement spectrum. The normalisation condition Trps4 = 1 leads to

14

- ¢
ZA:Z m’(Ze ke €k nk+1/2)|n n’>|m Hl 2 —H\/ —1/4 20

m k=1 k=1

where the orthonormality of the states |n) has been employed to write Z,4 as the product
of ¢ geometric series (one for each ny). Combining (19) and (20), the generic element of
the entanglement spectrum can be expressed in terms of the symplectic spectrum D as

¢ ¢ 1 on — 1/2\™
n — : [(1 — e_5k> e_”kffk] — H p— 1/2 (Jk n 1;2) . (21)

k=1 k=1

follows

The largest eigenvalue is given by ... = Ao, namely it has ny = 0 for all k. Its explicit
expression reads A, = Hizl(l — e %) = Hizl(ak +1/2)7%. Thus, (21) can be written
as ,
ng
A=A e” Sk mker _ Ao <Uk_—1/2) ] (22)
Pl Ot —|— 1 / 2
The gap between two eigenvalues in the entanglement spectrum characterised by the
vectors m and m is given by

¢ ¢
or—1/2
Imn = log Ay, — log Ay, = Z(nk —my) e = Z(mk — ny) log<k—/) : (23)

—1 —1 Uk+1/2

The gaps with respect to the largest eigenvalue are log \,... — log \,, = Zizl ey and
correspond to the special case m = 0 in (23). By arranging the symplectic spectrum in
decreasing order oy > 09 > --+ > 0y, we have 1 < g5 < --- < g/ for the single particle
entanglement energies. In order to find the gaps 0 < g; < gg < ... with respect to the
largest eigenvalue, one can first introduce B( = {Z 1Ek; 5 kj 7“} for r > 1 and

then compute the r-th gap as g, = min[(U], T)) \ {g;,1 < j <r—1}]. This procedure
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is not optimal, but it allows to get g, easily also for high values of r. The smallest gaps
are given by g1 = €1, go = min{2e1,£9} and g3 = min{?)gl, max{251,52},53}. The curves
in Fig. 7 have been found by employing the above expressions.

It is useful to partition the symmetric matrices v4 and H 4 into ¢ x £ blocks as follows

(28 me(RE) e

The blocks of 4 are the correlators Q;; = (G; §;), Pi; = (pi pj) and R;; = Re(¢; p;), with
1 <i<fland 1< j </ Correspondingly, the partitions in £ x £ blocks of the symplectic
matrices W and W occurring in the Williamson’s decompositions of v4 and H4 (see (5),

(11) and (10)) read
) (G e

and therefore the relation (10) becomes

(7v)-(57) &

These partitions in ¢ x ¢ blocks and the relation (14) lead to write the Williamson’s

w

decompositions (5) and (11) of v4 and H4 respectively as

_(U'DU+2'DZ U'DY + 2DV o
AT\ yvtDULVIDZ  YVIDY +VIDV
and
o VIEVHY'EY  —VIEZ-Y'EU 28)
AT\ eV —UtEY Z'EZ4+UCEU

Since the symplectic spectrum &£ of H,4 is related to the symplectic spectrum D of v,
through (12), the expression (28) provides the entanglement hamiltonian matrix H4 in
terms of the blocks of the matrices occurring in the Williamson’s decomposition of 74.

In the Appendix C we discuss the special case where v4 and H4 are block diagonal.
This class is very important because it includes the entanglement hamiltonians matrices
corresponding to static configurations [2,29,30,33].

2.2. A contour for the entanglement entropies

The contour for the entanglement entropies is a function of the position inside the region
A (and of the time, when the system is out of equilibrium) that has been introduced to
understand the spatial structure of the bipartite entanglement in pure states. For free
lattice models, it has been studied in [16,39-42|. Like the entanglement hamiltonian, also
the contour for the entanglement entropies cannot be determined from the entanglement
spectrum only.
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The contour function for the entanglement entropies s A : A — R must satisfy the
following two conditions

= > s0) s > 0. (29)
icA
In [40] other three requirements have been introduced and a contour function for the
entanglement entropy of free fermions has been constructed, verifying that it fulfils all
these five properties. This set of constraints does not fix uniquely the contour function.

In the harmonic lattices, a contour function has been proposed in [42], that satisfies
the two conditions in (29) and a weakened version of the other three conditions proposed
in [40]. In this manuscript we will employ this prescription. Another expression fulfilling
(29) has been suggested in [42], but the remaining three properties have not been proved
for this proposal. A third contour function has been considered in [39,41]: it satisfies the
first condition in (29) but numerical violations of the positivity condition sff) (¢) = 0 have
been observed for some configurations [42].

Let us consider the case where A is an interval made by ¢ sites, for simplicity. A
contour function s%)(i) can be constructed by associating ¢ real numbers pg(i) to every
symplectic eigenvalue oy, where 1 < i,k < ¢. The function px(i) is often called mode
participation function [39] and it fulfils the following conditions

l

Zpk(l) =1 pi(7)

=1

WV

0. (30)

A mode participation function py(7) allows to write the entanglement entropies (6) as in
(29) with

=" el sulo) (31)

being s,(y) the functions defined in (7) and (8) for n > 1.
We find it natural to consider also the contribution to the entanglement entropies
given by an interval (i1,i5) C A, namely

Zl,ZQ ZSA il,ig cA. (32)

i=11

The entanglement entropies 51(4”) correspond to the special case where iy and 75 are the
sites at the boundary of A.

We are interested in the temporal evolution of the above quantities after a global
quench and it is often useful to study their increments with respect to their initial value.
In particular, for SXL) (i1,19;t) given by (32), let us introduce

ASXL) (i1,405t) = S,(an) (41,25 1) — Sﬁ\n) (i1, 72;0) - (33)

In harmonic lattices, the contour function (31) is not unique because any mode
participation function fulfilling (30) provides a contour function (31) that satisfies (29).
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Furthermore, any 2¢ x 2¢ orthogonal matrix O can be employed to construct a mode
participation function p (7). In order to make contact with the reduced covariance matrix
va, in [42] the Euler decomposition of the symplectic matrix W in (5) has been employed
to construct an orthogonal matrix K leading to a reasonable candidate for the contour

function s(j) (7). This orthogonal matrix can be written in terms of W as follows

K= (WWH Y2W = W W'w)-1/2, (34)

Partitioning this 2¢ x 2¢ orthogonal matrix into ¢ x ¢ blocks

K= (g;; 5’;) (35)

the contour function for the entanglement entropies in harmonic lattices proposed in [42]
is (31) with the mode participation function given by

puli) = 1([<UK>k,i12 Vi)l + [(Zral + [<vK>k,iJ2) | (36)

2
Thus, the symplectic spectrum of 74 and the symplectic matrix W occurring in its
Williamson’s decomposition (5) provide both the entanglement hamiltonian matrix H4
of [28] (see e.g. (28)) and the contour function for the entanglement entropies of [42].
Let us remark that, although the discussion about the contour function sfff)(i) has
been done for an interval, it is straightforward to extend the above formulas to higher
spatial dimensions or to subregions A made by many disconnected components.

3. Free fermionic lattices

In this section we consider a fermionic system described by a quadratic hamiltonian. In
§3.1 we study the entanglement hamiltonian of a subsystem, that is quadratic as well.
In §3.2 we review the construction of the contour for the entanglement entropy in these
systems proposed in [40]. Relevant special cases are discussed in §3.3.

3.1. Entanglement hamiltonian

In a chain of free fermions described by a quadratic hamiltonian and in a Gaussian state,
the entanglement hamiltonian K4 takes the following quadratic form [25]

1 14

Ky = 2 > (Bi,j €\ + Digei)+ Fijeic+ Gig el ci) o

,5=1

where for the operators ¢; and éj the canonical anticommutation relations {¢;, é;} = 0i;
and {¢;, ¢} = {&,¢0} = 0 hold. The complex matrices in (37) satify D = —B* and

19 7]
G = —F* to ensure that K4 is hermitian. Collecting the operators into the 2¢ dimensional

vector @ defined by @' = (¢, ... ¢ éi é} ), the canonical anticommutation relations

~
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become {a;,a;} = I, ;, being I the 2¢ x 2¢ symmetric matrix with the ¢ x £ matrix 0 along
the diagonal and the ¢ x ¢ identity matrix off diagonal. Standard manipulations allow to
write the entanglement hamiltonian (37) in the following form [25]

X -7
a'H, a H, = ( ) (38)

K. —
A T —X*

N | =

up to constant terms, where the ¢ x ¢ matrices T and X are

1 % 1 %
=.(B+B' - (D+ D)) =(F-r-(G-a) (39)
and satisfy the conditions 7T = 7" and X' = —X.

The matrix €2 defined in (17) allows to introduce the vector # = Q @, whose elements
are hermitian operators that satisfy {7;,7;} = d;;, being QT Q" = 1. In terms of these

Majorana operators, the entanglement hamiltonian (38) becomes

-~ 1
Ra= 5 #H, 7= % FH A7 Ho=Q'H,Q' Hyi=-iH,  (40)
where H 4 is the following matrix

HAE< Im(T + X) Re(T+X)>.

—Re(T — X) Im(T — X) (41)

Since H 4 is 2¢ x 2¢ real and antisymmetric, a 2¢ x 2¢ real orthogonal matrix O exists such

that
~ _ ~ 0 ¢
OH,0" = 42
0= (%0 (42)
where € = diag{ei,...,e¢} with g5 > 0 [72]. The g are sometimes called single particle

entanglement energies. From (42) one observes that O (iH4)2 0" = £2 @ £2. Thus, the
real symmetric matrix —H% has a degenerate spectrum given by {7 ,1 < k < £} and is
diagonalised by the orthogonal matrix 0.

The second crucial 2¢ x 2¢ real antisymmetric matrix in the analysis of the fermionic
Gaussian state is the following correlation matrix [73-76]

(Ta)iy = —i([7i, 7)) (43)

which gives (7;7;) = [1(La)i; + i ;]/2. The same theorem employed above for H4 allows
to claim that a 2¢ x 2¢ real orthogonal matrix O exists such that

orao = (5% (44)

where N = diag{yl, e I/g} with v, > 0.
The single particle entanglement spectrum £ and the orthogonal matrix O in (42)
are related to the diagonal matrix £ and the orthogonal matrix O in (44) as follows [25]

& = 2arctanh (N) 0=0 (45)
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where the first expression is equivalent to g, = 2 arctanh(vy) = log[(1 + vx)/(1 — vx)] with
1 <k < (. By employing (44), the relations in (45) lead tof

Hy =2arctan(I'y4) . (47)

This formula plays the same role of (13) in the bosonic case (see §2.1).

The relation (42) leads to introduce d = O#, whose elements satisfy {cfz, CZJ} =0, j,
being O orthogonal. Furthermore, it is convenient to define fermionic creation and
annihilation operators yEL and f, as f = Q 'd, where ft = (f1... f fI ... i1, whose
elements satisfy { fi, f]} = I, ;. Combining the linear maps introduced above, one obtains

f=0'00a (48)

Q1O is unitary, being O real orthogonal and 2 unitary. The relation (42) and the
anticommutation relations of f allow to write the entanglement hamiltonian (40) in terms
of the operators in d and § respectively as

i /0 & Z‘ 1
S - g 1
A_Qd(_g O)d k—lgk(fkfk 2> (49>

that makes explicit the role of the single particle entanglement energies.
Let us introduce the partition in £ x ¢ blocks of the orthogonal matrix defined in (44),

namely
Uo Yo
0= 50
(27 (50
where the blocks are constrained by the orthogonality of O as follows
00" — UoUé—l—YoYOt UOZtO—FYOV(S B 10 (51>
n ZoU(t) + VoYOt ZOZ}) + VOV(E ~\o 1/’

In terms of the blocks of O in (50), the unitary matrix in (48) becomes

Q'oQ

_1(UO+VO+1(ZO—YO) UO—VO+1(ZO+YO)) (52)

N 5 Uo—Vo—i<Zo—|—Yo) U0+Vo—i(Zo—Y0)
By employing that d = OQa in (49) and comparing the resulting expression with (38),

1 Notice that, for an odd function foaa(z) =3 5 tp2*PT", by using (44), one finds

foua(OT4 0) = ( o 8 ) (46)

where foqa(z) = 37 5 0(—1)P t, 2F1.
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one writes 7" and X in terms of the blocks of O in (50) as follows

1
T:5{U55V0+V55U0—Y58ZO—Z§)5YO (53)

+1[Ugezo—255U0+Y55VO—V55Y0}}

X = {Uggvo—vgon+YoteZO—Z})5Yo (54)

1
2
+i[Ugezo—ZgSUO—Y55VO+V55YO]}.

The expression (49) for the entanglement hamiltonian naturally leads to introduce
the fermionic occupation number operators ﬁ ]Ek, whose eigenvalues and eigenvectors allow
to write the reduced density matrix as ps = >, Ap|n)(n|. Thus, one can perform an
analysis similar to the one reported for the harmonic lattices in §2.1, with the crucial
difference that the elements of the vector n are n; € {0,1} in these fermionic models. In
particular, the reduced density matrix can be written as

o Sho enlni—1/2)

pa=) _ZA n)(n] =) Aaln)(n| (55)

n

whose normalisation condition Trp4 = 1 provides the following normalisation constant

Z4 :Z m|<ze Shem1 (e~ 2|n)( n]>|m H€5k/2 1+e sk)_ (56)

m

Plugging this expression in (56), one obtains the entanglement spectrum

,ZEZ n
/\n _ i k=1 €k Nk _ )\mx o Zi::{ek nk (57>
[T (T +e=x)
Where the largest eigenvalue corresponds to ny = 0 for all k, being ¢, > 0. This gives
Ao Hk (14 e7#)~1, that has been used to get the last expression in (57). The gap
between two eigenvalues can be written as follows

14

¢
14+v
Gmon = l0g A, — log Ay, = Z(nk —my) e = Z ng — M) log(l k) . (58)

—v
k=1 —1 k

We find it convenient to consider the gaps with respect to the largest eigenvalue. These
gaps and their temporal evolution after a global quench are discussed in §6.

3.2. A contour for the entanglement entropies

An exhaustive analysis of a contour function for the entanglement entropy in chains of
free fermions has been carried out in [40]. We employ this prescription in our analysis
and refer the reader interested in further details to this reference.
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From (44) and the matrix € introduced in (17), it is straightforward to find

1+il 1 1-—-
2 2 2
Similarly, considering (42) and (45), one also obtains
1+iH 1 1-—-
—+21 A:otQ( —55@ 28>QTO. (60)

Thus, by employing (59), for a generic function f, we have [5,40]

R ()] W

The entanglement entropy can be obtained by specifying this formula to f(z) = — x log(x),

while the n-th moment Trp” of the reduced density matrix corresponds to f(x) = 2™. We
remark that v, < 1 [75].

A natural contour for the entanglement entropies is obtained as explained in §2.2
(see (31)) with the mode participation function given by [40]

1

pili) = 1 ([(Uon,f Vol + [(Zo)dl? + [<vo>k,i12) | (62)

In [40] it has been shown that the contour function constructed from (62) satisfies other
three properties beside (29) that we do not discuss in this manuscript. All these constraints
can be part of a more detailed definition (still unknown) that could lead to identify the
contour function for the entanglement entropies in a unique way.

3.3. Special cases

It is worth focussing the expressions discussed in §3.1 and §3.2 in some special cases.
First, let us consider the class of entanglement hamiltonians having

Vo =Uo Yo =—-2o (63)

that includes the entanglement hamiltonian after the global quench discussed in §6.

The unitary matrix (52) that provides the map (48) becomes the diagonal matrix
Q10O =(Up+iZo)® (Up—iZp), with Up +1 Zp unitary. The latter condition can be
obtained also by specialising the orthogonality condition (51) to this case. Furthermore,
(53) and (54) simplify respectively to

T=U,EUo+ ZHE Zo +1(UHE Zo — 25 EUp) X=0 (64)

where we remind that 7" is hermitian. Hence, (38) becomes a fermionic hamiltonian with
hopping terms given by [25]

l
Ky=) Tjéle (65)
ij=1
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and (41) simplifies to

ImT ReT
Ha= (—ReT ImT)‘ (66)

The hermitian matrix 7" in (65) can be diagonalised by a unitary matrix U and it has real
eigenvalues 7y, i.e. UT UT = diag{n;,...n,}. This decomposition allows to write

l
Ty=> Uk U (67)

k=1

Plugging this result into (65) the entanglement hamiltonian becomes Ky= Z o1 Tk fk fk,
where we have defined §f = Ué. Comparing this result with the map in (48), that is
diagonal in this special case and it is written in the text below (63), we conclude that
U = Up +1Zo. These observations have been done in [25], where it has also found that

T" =log(Cy' — 1) (68)

being C4 the correlation matrix whose generic element is (C);; = (¢l¢,), with 4,5 € A.
From (68), we have that the eigenvalues 7, of T" are related to the eigenvalues (j of Cy
as follows

M = 10g(1/¢ — 1) (69)

Comparing with §3.1, one finds e, = |n;| and vy = |2¢ — 1.
The Rényi entropies are obtained from the eigenvalues of Cy as [1,2,4-6]

= Z $n(Ck) sn(y) = 1 i n log [yn +(1- y)n} : (70)

The limit n — 17 of these expressions provides the entanglement entropy as

Sa= s(G)  sly)=—ylogly) — (1 —y)log(l—y). (71)

As for the contour for the entanglement entropies, in the special case (63) the mode
participation function (62) simplifies to

pi(i) = [(Uo)il? + [(Zo)ral* = |Uni|”- (72)

As consistency check, let us observe that the i-th element of the diagonal of the matrix
relation UTU = 1 gives the condition Zizl pr(i) =1for 1 <i < /L.

Another relevant special case corresponds to Yo = Zo = 0. For these entanglement
hamiltonian matrices the unitary matrix (52) reduces to

(73)

Q_10921(UO+VO UO—VO)
2

Uo—Vo Uo+ Vo
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where Up and Vp are orthogonal. In this case (53) and (54) become respectively
1 1
T:§{U35VO+V(§SUO} X:§{U55VO—V(§6UO}. (74)

Let us remarks that in the formulas described above we have not specified the explicit
form of the two-point correlators, hence they can be used to study more complicated
configurations like e.g. the ones where A is the union of many disjoint blocks of sites.

Finally, an interesting class of entanglement hamiltonian matrices included in the
one defined by (63) corresponds to Vo = Up and Yoy = Zp = 0. In this case the unitary
matrix (52) becomes the diagonal matrix Q71O Q = Uy @ Up, where Up is orthogonal.
Furthermore, the expression of 7' in (64) simplifies to T' = U} E Up. For instance, at
equilibrium, the entanglement hamiltonians of an interval in the ground state considered
in [31,32] belongs to this class.

4. Insights from CFT

In this section we employ the analytic results obtained for the entanglement hamiltonian
of a semi-infinite line after a global quench in CFT [15] to get some insights about
the qualitative behaviour of the entanglement spectrum and of the contour for the
entanglement entropies.

The CFT analysis performed in [44] (see also the recent review [63]) leads to the
following linear growth of the entanglement entropies before the saturation

S ~ ;T—TCO (1 + %) t t/0<1/2 (75)
(comparing the notation with [63], we have 79 = 47¢ thee), Where ¢ is the central charge of
the model. This gives S4 ~ 2mct/(37p) for the entanglement entropy and, by fitting this
linear growth, we can get 7y numerically. A slight dependence on n has been observed
in 79 (see e.g. [55]). We find worth remarking that a factor of 2 in (75) is due to the
fact that the interval has two endpoints. Taking the limit n — oo in (75) one obtains
—log Apax =~ mct/(370). The parameter 75 encodes some features of the initial state (we
refer to [47] for a complete discussion).

The temporal evolution of the entanglement hamiltonian of a semi-infinite line after a
global quantum quench in CFT has been studied in [15] by employing methods and results
of CFT with boundaries [19]. This analysis provides also the entanglement spectrum and,
in particular, the above linear growth for — log ..., is recovered up to a factor of 2, which
is due to the fact that the semi-infinite line has only one endpoint. This result suggests to
explore the qualitative behaviour of the entanglement spectrum before the saturation at
t/¢ ~ 1/2 by taking the analytic CFT expressions for the semi-infinite line and introducing
properly a factor of 2 to take into account the occurrence of two endpoints. As for the
gaps in the entanglement spectrum, from [15] we obtain

TTo Ag
2t

Ga,0 t/0<1/2 (76)
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which is 1/2 of the corresponding quantity for the semi-infinite line. In (76), the
coefficients A, are the non vanishing conformal dimensions (including also the ones of
the descendants) of a boundary CFT with the proper boundary condition, as discussed
n [15]. We find it worth considering also the ratios gso/ga0 = Ap/A, because they are
independent of 7p. From (75) and (76) it is straightforward to construct another expression
where 75 does not occur, namely
e 1

94,0 SXL) ~ == (1 - ﬁ) A, t/0<1/2. (77)
The temporal evolutions of (76), of (77) and of the ratios of the entanglement gaps with
respect to the first one after the global quenches that we consider in this manuscript are
shown in Fig. 7 and Fig. 20. From these data we notice that the best agreement with
CFT is observed for the ratios of the entanglement gaps.

The above analysis can be easily adapted to the temporal evolution after a local
quantum quenches [48] by employing the corresponding results of [15]. The crucial
difference is that logarithmic growths occur in these cases. For instance, for local quenches
(76) has logt instead of ¢ in the denominator. Instead, (77) holds also for local quenches.

In the remaining part of this section we exploit the CFT results for the entanglement
hamiltonian of the semi-infinite line after a global quench [15] to get insights about the
temporal evolution of the contour function for the entanglement entropies of an interval.

For some particular one-dimensional spatial bipartitions at equilibrium (e.g. an
interval in the infinite line at zero and finite temperature, or in a finite periodic system
for the ground state) a natural candidate for the contour function for the entanglement
entropies in CF'T can be obtained from the weight function occurring in the entanglement
hamiltonian [42]. By applying this idea to the half line after a global quench, one finds
the following CFT ansatz for the contour function [15]

. 1
sih(@, ) = (1 + 5) Fir(2,1) (78)

where n > 1 and
27 [cosh(27t /79)]? coth(ma /7o)
7o [cosh(4nt/1o) + cosh(2mx/79)]

It is straightforward to observe that 7 31(1"1) (x,t) depends on z/7y, t/7p and the central

charge c¢. Furthermore, Fy,, (z,t) = 1/ + O(1) as * — 0T, independently of time.
This implies that the expected logarithmic divergence of SX") as the UV cutoff ¢ — 0

Fua(z,t)

(79)

is independent of time as well. Indeed, this divergence can be obtained by removing an
infinitesimal disk around the endpoint of the half line and integrating the contour function
(78) from € to some point inside the half line. Instead, by integrating (78) in the entire
half line (¢, 4+00) with €¢/79 < 1, one obtains [15]

oo 1
[t =g (14 5 ) s(R comierm) 0o
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Figure 1: The contour function for the entanglement entropy of half line (left panel) from

(78) and of an interval (right panel) from the naive formula (81). In these plots ¢ = 1 and
To = 3.7905.

that gives the linear growth found in [44], namely =¢ when ¢ > 7. The r.h.s. of (80)
provides only the leading term of the entanglement entropy as e — 0. A subleading O(1)
term comes from the contribution of the conformal boundary states introduced through
the regularisation procedure [15,77] (see [42] for a discussion on this term in relation to
the contour function at equilibrium).

Considering t /7 fixed in (78), we find that 3h1 (:L‘, t) ~ e 2m/™ a5 1 — 400 and that

the height of the horizontal plateau is given by 5~(1 + 1) (this can be done by taking
t — oo first and then z — +00).

A typical temporal evolution of the contour function for the entanglement entropy
spi(z,t) = sflll) (x,t) is shown in the left panel of Fig. 1. The linear divergence as x — 0%
and the exponential decay as x — +o00 are independent of time. These two regimes are
connected for the intermediate values of x by a smooth step at x ~ 2t whose height is
%. The occurrence of this step moving in time has been first observed in the numerical
analysis performed in [40].

In this manuscript we are interested in the contour function for the entanglement
entropies of an interval A of length ¢ in the infinite line after a global quantum quench.
A CFT analysis for this case is not available in the literature. Hence, let us consider the

naive contour function obtained by superposing the two contour functions (78) associated
to the half lines (0, +00) and (—o0,¢), namely

n n n ].
S0he ) = 0 4 0 ) = (1 ) [P0+ Bl -] (5)

with Fy,1.(x,t) given by (79). The observations made above about Fy,.(x,t) lead to notice

that 7o sg%(a:, t) obtained from (81) is a function of t/¢, /¢ and 70/¢; and that s(f:?)(:c, t)

displays a linear divergence for  — 0% and for x — ¢, with the same time independent
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coefficient. For ¢t = 0, the naive analytic result (81) gives

a0 = g (1 * %) Linh(;r:c/ro) * sinh(27r(€1 — ) /7) 1 (82)

and in the asymptotic regime of long time we find

e
127’0

(n)
fim o131 =

(1 + 1) [Coth(ﬂ'ﬂf/ﬂ)) + coth(w(¢ — 9:)/7‘0)] : (83)

The naive contour function for the entanglement entropy is given by (81) with n = 1
and its typical temporal evolution is shown in the right panel of Fig. 1. This evolution
can be explained qualitatively in terms of two fronts with height % that start at the two
different endpoints of the interval and then propagate in opposite directions with velocity
equal to 2. The two fronts cross and superpose at t/¢ ~ 1/4 and each front takes t ~ ¢/2
to travel across the entire interval. This qualitative features have been first observed
in [40] by analysing the numerical data obtained in a chain of free fermions. Further
numerical data supporting this picture are presented in §5 and §6.

Given two points 0 < 1 < xy < /£ inside the interval A, let us integrate the naive
contour function (81) in the interval (x,x2). The result reads

S (@1, wast) = / s%(x, t) dx (84)

X1

(1 N 1) log ( [ cosh(4mt /7o) + cosh(2m (¢ — :c)/TO)] (sinh(wx/ro))2>
T 24 [ cosh(4mt /7o) + cosh(2mx/70)] (sinh(7 (¢ — x) /7))

which is a function of t/¢, x1 /¢, x5/¢ and 7/¢. Subtracting to (84) its value at t = 0, one
finds

2

xr1

where we have introduced the following function

cosh(m(2t — € + x)/7) cosh(m(2t + ¢ — ) /70) [cosh(mz/70)]?

n(x;t) cosh(m(2t — x)/7o) cosh(m(2t 4 ) /7o) [cosh(m (¢ — x)/70)]?

(86)

In Fig. 11 and Fig. 22 this formula (where the value of 7y is obtained by fitting the
linear growth of the entanglement entropy) gives the grey dashed-dotted curves, that can
be compared against numerical data corresponding to particular quenches in a harmonic
chain (see §5) and in a chain of free fermions (see §6) respectively.

The expression in (85) provides the entanglement entropies when (zq, x2) = (¢,£ —¢).
In this case, we have

. ' N 1 2 [cosh (7l /7y) cosh (27t /7o)
AST(0,0,1) = lim AS™ (6,0 —eit) = = (14 =1 .
Sa0(0,4;) Jam Saole; L =€) 2\ ) cosh(27¢/1y) + cosh (4t /7o)

(87)
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Taking ¢ > 79 and ¢ > 79 first, and then considering the regimes t < ¢/2 and t > (/2,
this expression simplifies respectively to

AST(0,6:t) ~ ;r_; (1 + %) t ASTH(0,65t) ~ ;:0 (1 + %) g (88)
in agreement with [44].

Let us remark that the results reported above have been obtained by employing in a
naive way the CFT analytic expressions of [15] corresponding to the half line to study the
case of a finite interval, assuming that the dynamics before the thermalisation at ¢ /¢ ~ 1/2
is governed by a neighbourhood of the endpoints, where the interval is indistinguishable
from the half line. It would be interesting to extend the analysis of [15] for the quantum
quenches to a finite interval.

5. Interval in a harmonic chain

In this section we study the temporal evolution of the entanglement hamiltonian matrix
H, of an interval A in an infinite harmonic chain after a global quench of the frequency
parameter.

The hamiltonian (2) with periodic boundary conditions ¢, = §o and p; = po can be
diagonalised in the Fourier space by introducing the annihilation and creation operators ay,
and a,t in the standard way. This procedure can be understood also in terms of canonical
transformations through the Williamson’s theorem applied to the matrix defining the
quadratic hamiltonian (2). The diagonalised form of (2) is given by

::w< pak + = ) (89)

where the dispersion relation reads

wkz\/wQ—l—%[sin(ﬂk/L)]z k=0,....,L—1. (90)

The quench protocol is the following. The system is prepared in the ground state
|1)g) of the hamiltonian (2) with periodic boundary conditions and non vanishing mass
w = wy # 0, whose diagonalised form is

L-1

. L 1
H (wo) = Zwo,k (Cbak Qo + 5) (91)

k=0

being the dispersion relation wg given by (90) with w = wy. At t = 0 the frequency
parameter is suddenly quenched to a different value w # wp; hence the unitary time
evolution of [¢)g) for t > 0 is determined by the hamiltonian (2) with w # wp, namely

() = e T ) £>0. (92)
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The temporal evolution of several quantities after this quench have been studied in
various papers (see the reviews [63,64] for an exhaustive list of references).

We are interested in the temporal evolution of the entanglement hamiltonian matrix
H 4 discussed in §2.1 after the global quench of the frequency parameter described above.
The entanglement hamiltonian matrix H4(t) can be evaluated once the reduced covariance
matrix v4(¢) is known (see (13), (15) and (28)). Thus, the first step is to construct the
covariance matrix (t) of the entire system, whose blocks are given by the following two-
point correlators

Qi (t) = (ol 4i(t) 4;(¢) ltho)
Py j(t) = (Yol pi(t) p;(t) ltho) (93)
Ri;(t) = Re[ (o] Gi(t) D;(t) [v0)]
where the time evolved operators in the Heisenberg picture §;(t) and ¢;(t) read
G;(t) = €™q;(0)e™ (1) = e g;(0)e (94)

For periodic boundary conditions, the explicit expressions of the correlators in (93)
in the thermodynamic limit read [46]

Q)= 3= [ Qutyeos[(i =) F] dF
P;(t) = %/0% Py(t)cos [(i — j) k| dk (95)
R; ;(t) = — i i FRI”C(t) cos [(i — j) lﬂ dk

where the functions Q(t), Px(t) and R(t) containing the dependence on w, wy and t are
defined as follows

Qr(t) = L (& cos? (wit) + Yok sinz(wkt))

mwy \ Wo Wi
Pi(t) = mwy ( Lk sin®(wyt) + WOk o2 (wkt)) (96)
Wo,k Wk
Ri(t) = (& — %) sin(wyt) cos(wyt)
Wo,k Wi

where wy, = \/ w? + 2£[sin(k/2)]? and wo, is given by the same expression with w replaced
by wy. At t = 0 these functions become respectively

Qu(0) = —

mwo,k

Plugging these expressions into (95), one recovers the correlators associated to the ground
state of Hy, as expected.
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It is important to remark that for ¢ > 0 all the modes labelled by & in (95) and (96)
provide a finite contribution when w = 0. The zero mode, i.e. the one corresponding to
k = 0, deserves a particular attention because, for static configurations, the occurrence of
this mode leads to a divergence in the correlator (¢;G;) as w — 0%. This is related to the
translation invariance of the periodic chain. Instead, the correlators (95) are finite in the
massless regime; hence, we are allowed to consider a global quench where the evolution
hamiltonian has w = 0.

The time evolved state (92) is also Gaussian, hence it can be described through the
formalism discussed in §2.1. In particular, the correlators (95) provide the blocks of the
covariance matrix y(t) after the global quench. The correlators (95) or their modifications
have been employed to study different aspects of entanglement in harmonic lattices (see
e.g. [52,55,59]).

5.1. Numerical results for the entanglement hamiltonian matriz

We are interested in the temporal evolution of the entanglement hamiltonian matrix H(t)
corresponding to an interval A made by ¢ sites after the global quench of the frequency
parameter. The reduced covariance matrix v4(t) and the entanglement hamiltonian
matrix H,(t) can be partitioned into ¢ x ¢ blocks (see (24)) that depend on t > 0,

namely
QW RO (M) E()
7alt) = (R(t)t P(1) ) Halt) = (E(t)t N (1) ) ‘ 58)

The relation between H4(t) and the reduced covariance matrix v4(t) can be expressed as
in (13), (15) or (28).

In our numerical analysis, the entanglement hamiltonian matrix H4(t) has been
constructed by employing the Williamson’s decomposition (11) for H4 and (14), where
the symplectic matrix W entering in the Williamson’s decomposition (5) for v4 has been
obtained as explained in the Appendix B. The symplectic eigenvalues of H4(t) have been
found from the symplectic spectrum of 74 through the relation (12). The correlators
employed to define v4(¢) have been introduced in (95). In this manuscript we mainly
consider the global quench of the frequency parameter described above with wy = 1 and
w = 0. Some data corresponding to an initial state having wg = 5 are also provided.

The relation (12), that provides the symplectic spectrum of H4 in terms of the one
of v4, requires oy > 1/2. Since many elements of the symplectic spectrum of 4 are very
close to 1/2, the software approximates them to 1/2, spoiling the applicability of (12) to
get the symplectic spectrum of H,. This forces to obtain o;’s with very high numerical
precision. The number of digits depends on various parameters of the configuration like
¢ and t. In our numerical analysis for the harmonic chain we worked with precisions
between 200 and 1000 digits.

In Fig. 2 we show the temporal evolution of the entanglement hamiltonian matrix
H 4(t) after the global quench written in the form (98), i.e. in terms of its ¢ x ¢ blocks.
The main feature to highlight with respect to the entanglement hamiltonian matrices



Entanglement hamiltonians in 1D free lattice models after a global quantum quench 25

t=20.1 t=25 t=10
.
t =20 t=25 t =30
12
"'\» N 10
N N N\ :
A : D\
6
4
A A
- -~ |
B A 0
2
t =235 t=40 t =45
t =150 t =100 t = 200
0.25
\ 0.2
. 0.15
\ % 0.1
\ 0.05
\, :
\ N S -0.05

-0.2

Figure 2: Entanglement hamiltonian matrix H(t) in (98) for an interval having ¢ = 100
sites in the infinite harmonic chain after the global quench given by wy =1 and w = 0.
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corresponding to static configurations [2] is that the off diagonal block E is not vanishing
and therefore it contributes in a non trivial way to determine the out of equilibrium
dynamics. The magnitudes of the elements of H,4(t) become very small for long time.
Indeed, a smaller scale has been chosen in the three bottom panels of Fig. 2 to show the
structure of the non vanishing elements. At early times only the diagonal blocks are non
vanishing and mostly around their main diagonals. As time evolves, also the off diagonal
elements of the blocks become relevant. The most evident feature that can be observed
from the time evolution in Fig. 2 is the occurrence of bands in the different blocks of
H 4 (t) whose widths increase with time. We consider these widths in more detail below,
during the discussion of Fig. 4, Fig. 5 and Fig. 6.

The reflection symmetry of the configuration with respect to the center of the interval
leads to a corresponding reflection symmetry with respect to the center in any given
diagonal of the blocks M(t) and N(t) at any fixed time. More explicitly, we checked
numerically that M;; = My_;11 41 and N;; = Ny_jr10-441 with 1 < 7 < £ for the
main diagonals and that M, = My_p_iv10—iy1 and Ny, = Ny_p_it10-i+1 along the
p-th diagonal, with p > 0 and 1 < 7 < ¢ — p. As for the off diagonal block E(t), we
observe a symmetry with respect to the center of the block, namely E;; = Ey_i11,0-j11
for 1 <,5 < /L.

The temporal evolution of the blocks composing H(t) is qualitatively different. As
for the symmetric ¢ x ¢ matrix M(¢) in (98), the largest contributions come from the
main diagonal, that decrease as time evolves and remain positive during all the evolution,
reaching a stationary curve for long times (see the top left panel of Fig. 3). The first
diagonals are mostly negative and in some point become positive at some time (see the
top right panel of Fig. 3 and the corresponding inset). In the top left panel of Fig. 4 we
show the antidiagonal of M (t), that displays oscillations around zero.

Interesting features can be observed also for the temporal evolution of the symmetric
block N(t) in (98). The diagonal of N(t) is shown in the middle left panel of Fig. 3: first
it grows until a maximal curve and then it relaxes to a positive curve for long time. The
elements of N(t) are mostly positive but some of them become negative for large times
(see e.g. the inset of the top right panel in Fig. 4 and the one of the middle right panel
in Fig. 3). The block N(t) is the only one where the evolution of the main diagonal and
of the first diagonal are qualitatively similar: a smooth positive wedge grows from the
center of the interval until ¢/¢ ~ 0.2, then its tip decreases and gets smooth forming a
plateau whose height decreases in time.

The evolution of the block E(t) is qualitatively different from the one of M(t) and
N(t) because this matrix is not symmetric. Furthermore, it vanishes for ¢ = 0 and it
seems that its contribution is zero also for long times. The elements of this block are
mostly negative but without a definite sign for all the times (see e.g. its first diagonal in
the bottom right panel of Fig. 3). From Fig. 2, we observe the formation of two mostly
negative bands close to the diagonal for small times having the shape of two parallelograms
(see also the top right panel in Fig. 18) whose height along the antidiagonal increases in
time until ¢/¢ ~ 0.5, when they vanish. As for the main diagonal of F(t), a smooth
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Figure 3: Harmonic chain: Temporal evolution of the main diagonals (left panels) and of
the first diagonals (right panels) composing the £ x ¢ blocks of the entanglement hamiltonian
matrix Ha(t) in (98) for an interval with ¢ = 100 sites. The insets zoom in on small values,
in order to show the curves for large times. This figure, that is complementary to Fig. 2
and Fig. 4, has been discussed in §5.1.
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Figure 4: Harmonic chain: Temporal evolution of the antidiagonals of the £ x £ blocks
composing the entanglement hamiltonian matrix H4(t) in (98) for an interval with ¢ = 100
sites. The insets containing red curves zoom in on small values, in order to show the curves
for large times. In the second zoom of the top left panel we show only two curves to highlight
the fact that the antidiagonals are very small for |i/¢ — 1/2| 2 t/¢. A similar behaviour
occurs in the other panels, as shown in Fig. 5.

negative wedge develops until it reached a minimum value; then it goes back to zero in a
peculiar way; indeed a small plateau is formed whose width increases and then decreases,
leading to two fronts that move in the opposite directions towards the endpoints of the
interval (see the bottom left panel of Fig. 3).

In Fig. 4 we show the temporal evolution of the antidiagonals of the blocks composing
the entanglement hamiltonian matrix H4(f) in (98). Although the temporal evolutions
of the antidiagonals in the three blocks look quite different, the main common feature
is the fact that at a fixed time they become very small (and not vanishing) around the
same points. The distance 2d, between these points provides the total width of the bands
occurring at any given time in each block (see Fig. 2). The width dj increases linearly in
time with velocity equal to one, as shown in the top left panel of Fig. 18. This feature has
been highlighted in Fig. 5, where each panel shows all the three antidiagonals together at
a given time.

As for the block M (t), its main diagonal (top left panel of Fig. 3) is not captured in
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Figure 5: Harmonic chain: Antidiagonals of the blocks in the entanglement hamiltonian
matrix (98) for various times and two values for £. The points where all these antidiagonals
become very small evolve linearly in opposite direction travelling from the center towards
the endpoints of the interval with velocity equal to one (see top panels in Fig. 18, where
2dy denotes the width of the curves shown here).
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Figure 6: Harmonic chain: Antidiagonals of the blocks in the correlation matrix (98)
for an interval of length ¢. The points where all these antidiagonals become very small
evolve linearly in opposite direction travelling from the center towards the endpoints of the
interval with velocity equal to one. This evolution is observed also for the entanglement
hamiltonian matrix (see Fig. 5). The bottom right panel shows Cy4 for ¢ = 20 and ¢ = 100.
This should be compared with the left panel of the second line in Fig. 2.
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the top left panel of Fig. 4 because ¢ is even. In N(t) both the temporal evolutions of the
diagonal (middle left panel in Fig. 3) and of the antidiagonal (top right panel in Fig. 4)
display a plateau but we remark that the behaviour before the formation of this plateau
is very different.

It is instructive to compare the temporal evolution of the blocks in entanglement
hamiltonian matrix H,(t) with the one of the blocks in the reduced covariance matrix
va(t) (see (98)). The main difference is the fact that the blocks of H,(t) are not
homogeneous along their diagonals (see Fig. 2 and Fig. 3), while the blocks of v4(t) are
constant along any given diagonal (see the bottom right panel of Fig. 6, that corresponds
to a given time), as it can be easily inferred from (95). In Fig. 6 we consider the temporal
evolution of the antidiagonals of the blocks in v4(¢). Comparing this figure with Fig. 5,
one concludes that also the width of the bands occurring in the three blocks of 74(t)
increase linearly in time with velocity equal to one. Nonetheless, let us stress that the
shape of the antidiagonals occurring in H4(t) and in v4(t) is very different.

As first quantitative check, we have compared the linear growth of the entanglement
entropy obtained from our numerical data for the harmonic chain with the CFT formula
Sa =~ 2mcet/(37m) [44,63] (see also §4) with ¢ = 1, finding 7y ~ 3.79 (which agrees e.g.
with the numerical value obtained in [42])

5.2. Entanglement spectrum

A numerical analysis for some quantities related to the entanglement spectrum has been
reported in Fig. 7. The top left panel shows the symplectic spectrum of H, for various
times and two different values of ¢. For the low-lying part of this spectrum, i.e. small k’s,
we have e, ~ €1 and this degeneracy disappears for high values of k. At small times, ¢,
is linear in terms of £ while for long time the curve of £ bends towards zero, although it
never vanishes. It would be interesting to consider g5 /¢ in the limit of large values of ¢. In
the top right panel of Fig. 7 we consider the temporal evolution of the largest eigenvalue of
the entanglement spectrum (see the text below (21)). Since 51(4") — —log A\ a8 0 — 00,
this curve can be compared with the CFT results for the Rényi entropies [44,63] and a
good agreement is found. Fitting the linear growth of —log \,.. we get a slope of 2—11
times the slope of the entanglement entropy, while the one predicted by (75) is %

In the remaining panels of Fig. 7 we explore the temporal evolutions of the gaps
in the entanglement spectrum. The data about these evolutions display two distinct
temporal regimes separated by t/¢ ~ 1/2. For t/¢ < 1/2, the CFT result (76), obtained
from the analysis of [15] for the semi-infinite line, predicts linear growths in time for the
inverse of the gaps with slopes proportional to the conformal spectrum (including also the
dimensions of the descendants) allowed by the proper conformal boundary conditions. The
numerical data in the middle left panel of Fig. 7 display these linear growths for t/¢ < 1/2.
By fitting the slopes of these linear growths through (76) with 75 ~ 3.79 obtained above
from the linear growth of the entanglement entropy, we find A; = 1.022, A, = 2.045 and
A3 = 3.058. In order to reduce the influence of the initial state encoded in 7y, in the
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Figure 7: Harmonic chain: Entanglement spectrum for an interval of length ¢ after the
quench of the frequency parameter given by wg = 1 and w = 0. Top left: Single particle
entanglement spectrum (see (12)). Top right: Temporal evolution of the largest eigenvalue
of the entanglement spectrum (see the text below (21)). Middle left: Temporal evolution
of the first gaps in the entanglement spectrum (see the text below (23)). The legenda of
this panel holds also in the remaining ones. Middle right: Temporal evolution of ¢S4 (the
inset zooms in on the lowest plateau, showing that the data having ¢ = 50 and ¢ = 100
do not overlap). Bottom: Temporal evolution of the ratios g./g; between the gaps in the
entanglement spectrum (the insets zoom in on the two higher plateaux).
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Figure 8: Harmonic chain: Temporal evolution of the gaps in the entanglement spectrum
for an interval of length ¢ after the quench of the frequency parameter given by wy = 5 and

w = 0 (see also the corresponding panels in Fig. 7).

Top left: Temporal evolution of the

first gaps in the entanglement spectrum (see the text below (23)). The legenda of this panel
holds also for the other ones. Top right: Temporal evolution of g,.54. Bottom: Temporal
evolution of the ratios g,/g1 between the gaps in the entanglement spectrum. The panel
on the left focuses on the regime ¢/¢ < 1 (the insets zoom in on the two higher plateaux),
while the panel on the right highlights the behaviour for long times. The curves in the left
panel are very similar to the ones in the bottom panel of Fig. 7.

middle right panel and in the bottom panel of Fig. 7 we consider the temporal evolutions

of g.S4 and the ratios g,/g; respectively, which should be independent of 7y according to

(75) and (76). As for g,S4, it is evident that curves corresponding to different values of
¢ do not collapse; hence more values of ¢ (possibly also larger than the ones considered

here) are needed in order to make comparisons with CFT results.

The temporal evolutions of the ratios g,/g; of the entanglement gaps in the bottom
panel of Fig. 7 display interesting features. For ¢/¢ < 1/2 the curves having different

0’s collapse forming plateaux whose heights are given by strictly positive integers. This

result agrees with the fact that the underlying CFT contains the primary 0,¢ and its
descendants.

In Fig. 8 we show numerical data for the temporal evolution of the gaps in the
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entanglement spectrum when the initial state has wy = 5, in order to explore the
robustness of the observations made above under changes of the initial state. For this wy
we consider small values of ¢ such that the product wyf gets the same values corresponding
to the data shown in Fig. 7. The qualitative behaviour of 1/g, is the same one observed
in Fig. 7 (the slopes of the linear growths are different, as expected, being (76) dependent
on the initial state through 75). In the temporal evolution of ¢S54 we observe oscillations
that are due to the small values of ¢ (indeed, they do not occur in the middle right panel
of Fig. 7). Interestingly, the temporal evolutions of the ratios g./g; coincide with the
ones reported in Fig. 7, meaning that this quantity displays some independence on the
initial state. It would be instructive to consider other values of wy and higher gaps in
order to understand better how much the temporal evolutions of g,./g; are robust under
modifications of the initial state. In the bottom right panel of Fig. 8 we have considered
also long times and from these data we can identify two regimes: ¢/¢ < 1/2 and the
long time regime. In both these temporal regimes we observe plateaux having the same
heights. Thus, the ratios in the CFT spectrum can be read also from the long time regime.

5.8. A contour function from the quasi-particle picture

In [44] a quasi-particle picture has been introduced to explain the temporal evolution of
the entanglement entropy after a global quantum quench. The underlying idea is based
on the fact that the initial state has very high energy with respect to the ground state
of the hamiltonian governing the temporal evolution; hence it can be seen as a source of
quasi-particle excitations. In particular, in one spatial dimension, it is assumed that at
t = 0 each point of the space emits two quasi-particles with opposite momenta p and —p
according to certain probability distribution that depends on both the initial state and
the evolution hamiltonian. Only the particles emitted at the same point are entangled
and all the points of the space emit the quasi-particles in the same way. For ¢ > 0, the
positions of the quasi-particles emitted at the same point x are x + v,t and x — v,t, being
vp > 0 and v_, = —v, for p > 0.

Considering a spatial bipartition AU B and two points z; € A and x5 € B; at time ¢
they are entangled only if they are reached simultaneously by two quasi-particle emitted
from the same point = at ¢ = 0. The bipartite entanglement between A and B is obtained
by summing the contributions of all the points x fulfilling this condition. In particular,
for the entanglement entropy we have [44]

O [ o [ o [ o == i s s o

where §(p) is obtained by multiplying the momentum distribution function and the
contribution of the pair of quasi-particles with momenta p and —p to the entanglement
entropy. The integration domain of the allowed momenta is model dependent. Performing
the spatial integrals in (99), one finds

Salt) ~ 2t / dpi(p) v, + ¢ / dp3(p). (100)
loplt<t [vp|t>£
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Figure 9: Temporal evolution of the contour for the entanglement entropy of an interval
made by ¢ sites in the periodic harmonic chain, evaluated from (31) and (36). Left: ¢ = 50.
Right: ¢ = 100. The insets show the temporal evolution of the entanglement entropy
obtained through the contour function (see (29) for n = 1).

When a maximum velocity v, exists, Sa grows linearly in time for vyt < ¢/2, while
Sa o L for vyaxt > £/2. In a CFT we have |v,| = vpax = 1 for all p [44,63]. Notice that
(100) does not take into account the initial value of the entanglement entropy.

The expression (100) of the entanglement entropy obtained from this quasi-particle
picture provides some functions s (x,t) such that Su(t) = [, sa(x,t)dz. Let us introduce
three positive functions fo(z), fi(z,p,t) and fo(z, p,t) fulfilling the following conditions

/ folz)dx = SA|t:0 / filz,p,t)dx = 2v,t / folz,p,t)de = 1. (101)
A A A

Taking into account the initial value Sy4|;—o in (100) and employing the constraints (101),
it is straightforward to write the entanglement entropy as Sa(t) = [, sa(z,t) dz with

sawt) = [ dphep o) + [ dphlen s o). (102
2|vplt<t 2|vp|t>2
Since our configuration is symmetric with respect to the center of the interval, it is natural
to require that fo(z) = fo(¢ — x) and f;(x,p,t) = fi({ —x,p,t) for i = 1,2. As mentioned
above, (99) is obtained by assuming that the emission of the quasi-particles is spatially
homogeneous, and this assumption provides a significant restriction to the form of the
functions in (102).

Let us consider the infinitesimal contribution to the entanglement entropy dSa(t) =
sa(x,t)dx provided by an infinitesimal interval (x — dx/2,x + dx/2) centered in a point
x € A. At t > 0, this quantity is proportional to the number of quasi-particles (i) that
are in this infinitesimal interval (ii) whose entangled quasi-particle is in B. The quasi-
particles fulfilling these conditions have been emitted at ¢t = 0 from the position = — |v,|t
or from x + |v,|t. For v,t < /2, the quasi-particles emitted at © — |v,|t contribute when
2|v,|t > x, while the ones emitted at x + |v,|t matter when 2|v,|t > ¢ — x. Instead, for
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Figure 10: Temporal evolution of the contour for the entanglement entropy of an interval
of length ¢ in the periodic harmonic chain according to (104), obtained through the quasi-
particle picture (see §5.3). Left: fo(z) = 0 identically. Right: fo(z) = 3541’)0 (z,0) defined in
(82) has been used in (104) in order to capture the linear divergence close to the endpoints.

v, t > £/2 the quasi-particles coming from both x — |v,|t and = + |v,|t contribute. These
considerations lead to the following expressions

filz,p.t) = % p1(2) OQ2Jvp| t — 2) + 01 (€ — 2) O2]vy| t — £ + ) fa, p,t) = pa(x)
(103)
where ¢; are non negative, (¢ — x) = pa(z) and © is the Heaviside step function. The
spatial homogeneity in the quasi-particle production leads to drastic simplifications given
by ¢1(x) = po(x) = 1 identically.
The functions in (103) fulfil (101) and the symmetry conditions introduced in the
text below (102). Thus, the contour function (102) becomes

1 N - -
SA(J:7 t) - 5 [ /z<2fupt<68(p) dp * /K— a:<2|vp|t<fs<p) dp:| +/2|vp|t>E8(p) dp * fo ('T) (104>

Integrating this expression between two generic points 0 < x1 < x5 < £, we obtain

Suovast) =250 2 [ s [ s [ sa] aos)

|vp|t>£ —x1<2vpt<l 2<2|vp|t<l

- % [/Z 5(p) luplt + 2> = £) dp +L (2[vplt — 1) 5(p) dp} +/:f0(x) dz .

—zo<2vplt<l—my 1<2|vp|t<z2
The function §(p) can be computed by employing the fact that the density of
thermodynamic entropy in the stationary state coincides with the one of the entanglement
entropy in (100) [60].
For the global quench in the harmonic chain that we are considering, the stationary
values of local observables can be described by a Generalised Gibbs Ensemble [50, 57]
(we refer the interested reader to the review [65] for an extensive list of references). The
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velocity v, of the quasi-particles can be computed as v, = d,w,, being w, the dispersion
relation of the model. For the harmonic chain, in [46,60] it has been found that

_ 1 1 w (,cjo7 1
s(p) = %[(np +1)log (n, + 1) —ny,log np} n, = 1 (E{)p + w_pp) ~5 (106)

where w, = \/w2 + 2[sin(p/2)]? (see (90)) and wy,, is obtained by replacing w with wy in

wp. The dispersion relation (90) provides the velocity of each momentum mode as follows

Ow,, _ (k/m) sin(p)
op Vw? + (4k/m) sin?(p/2)

Let us remark that the above results based on the quasi-particle picture hold for any value

(107)

Up =

of the frequencies wy and w, while in our numerical analysis wy = 1 and w = 0. It would
be interesting to consider also other values for these parameters.

In Fig. 9 we show the temporal evolution of the contour for the entanglement entropy
evaluated through the prescription of [42], outlined in §2.2. This qualitative behaviour,
which has been observed also in [40] for fermionic chains after a global quench, has been
obtained through the naive analysis performed in §4 by employing the CFT formulas
of [15] (see the right panel of Fig. 1). The curves in Fig. 9 can be interpreted in terms of
two fronts starting from the endpoints and travelling in the opposite directions towards
the center of the interval. Each front has a plateau, that is not exactly horizontal in the
numerical data. Since the two fronts have velocity equal to 2 (see also §4), they cross
each other around ¢/¢ ~ 1/4 and superpose until they reach the opposite endpoint around
t/¢ ~ 1/2. Notice that the data shown in the two panels of Fig. 9 do not overlap, meaning
that larger values of ¢ are needed to obtain a prediction for this curve in the limit of large
¢. This prediction can be done from the data obtained for the global quench in the chain
of free fermions considered in §6 (see Fig. 21). We remark that the data in Fig. 9 display
a divergence close to the endpoints of the interval that is independent of time.

The contour function for the entanglement entropy obtained through the quasi-
particle picture (namely by employing (104), (106) and (107)) is shown in Fig. 10, where
in the left panel fo(x) = 0 identically, while fo(z) = 55417)0(30,0) in (82) has been chosen
in the right panel. The latter choice leads to reproduce also the linear divergencies of
the contour function for the entanglement entropy near the endpoints of the interval.
The quasi-particle picture formula (104) captures in a better way some features of the
numerical data with respect to the corresponding CFT expression (81). For instance, the
curve in Fig. 10 having ¢/¢ = 1/4 is not flat in the middle of the interval and that the
local maximum of the curve having 1/4 < ¢/¢ < 1 increases with time, while in the right
panel of Fig. 1 it is constant and equal to half of its asymptotic value for ¢t — oo.

In Fig. 11 we consider the quantity introduced in (33) with n = 1 for three different
choices of (i1,142): the case with i = 0 (top panel), the case with fixed 0 < i; < ¢/2 and i
variable (middle panel) and the case with (iy,42) in the middle of the interval A (bottom
panel). The data points (obtained through (31), (32), (33) and (36)) are compared against
the corresponding formula coming from the quasi-particle picture expression (105) (black
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dashed curves), where the terms containing f, cancel, and also against the naive CFT
expression (85) (grey dashed-dotted curves). Notice that the CFT curves and the ones
obtained from the quasi-particle picture change slope at the same values of t/¢. At the
beginning of the evolution, AS4 grows linearly with a slope that depends on whether
(i1,12) contains one or two endpoints of A (notice that the red curves in the top and
bottom panels correspond to the entanglement entropy), while it vanishes whenever the
endpoints of A do not belong to (i1,45). For ¢/¢ > 1/2 all the pairs of quasi-particles have
contributed and the curves reach a constant value proportional to the size of the interval
(11,12).

For t/¢ < 1/2, all the curves in Fig. 11 exhibit a piecewise linear behaviour and, for
a given configuration, the slope changes at most four times in correspondence to values of
t/¢ that depend on (i1, ) and that are captured both by the naive CF'T expression (85)
and by the quasi-particle picture expression (105). In the top panel of Fig. 11 the changes
of slope occur at t/¢ = xq/(20), t/0 = ({ — x0)/(2¢) and t/¢ = 1/2; in the middle panel at
t/0=ua1/2,t/0 = (a1 +x1)/(20), t/0 = (£ —ay —x1)/(20) and ¢/ = (£ — x1)/(20) (in the
data shown correspond to 21 = £/5); and in the bottom panel at ¢t /¢ = (¢/2—ag)/(2¢) and
t/0 = (€/2+ap)/(2¢). These values come from the quasi-particle picture. First we observe
that the segments composing any piecewise linear curve are horizontal or have a positive
slope that can take two values such that one is twice the other one. The quasi-particles
can entangle (i1,43) with B by crossing one or both the endpoints of A. Denoting by ng
(nz) the number of particles entangling (i1,42) with B across the right (left) endpoint of
A, we have that the segment is horizontal whenever both nz and ny, are constant in time.
Instead, when only either ngi or ny is increasing in time, the corresponding segment has a
positive slope, that becomes twice this value whenever both ng and nj, are increasing in
time. By adapting these considerations to the configurations for (iy,is) considered in the
three panels of Fig. 11, one obtains the above values of ¢/¢ corresponding to the changes
in the slope of the piecewise linear curves.

6. Interval in a chain of free fermions

In this section we study the temporal evolution of the entanglement hamiltonian matrix
after the global quench in a chain of free fermions introduced in [1,49].

Let us consider the following inhomogeneous hamiltonian written in terms of the
fermionic creation and annihilation operators ¢, and cf, (that satisfy the standard
anticommutation relations {c},cl } = {c,,cn} =0 and {c,, !} = Opmn) [49]

+oo
Hy=— % > ta(el éngpr + ey én) (108)

where o, = 1 and ts,11 = 0, namely only pairs of sites are coupled (dimerized chain).
The system is half filled and prepared in the ground state |¢)y) of Hy.
At t = 0 the inhomogeneity is removed and the unitary time evolution of |¢y) is
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governed by the translation invariant hopping hamiltonian given by

. 1 &
H=-3 > (nn + ey én) (109)

n=—oo

which is also known as the tight binding model at half filling.
In [49] the analytic expression of the correlation matrix after the global quench has
been computed. Its generic element C; ;(£) = (¢} (t) ¢;(t)) reads

)

Ciglt) = OF) +1 -2 509 j(21) (110)

where J,(x) is the Bessel function of the first kind and

o1 1
oy = 5 |0+ 5 (Gt +0i51) | (111)
By employing that J_,(z) = (—1)"J,(x), we have that Re[C; ;(t)] is symmetric and that
Im[C; ;(t)] is antisymmetric. Furthermore, we remark that C; ;(t) — Ci(f;»o) as t — +00;
hence the correlation matrix is real in the asymptotic regime of long time.

6.1. Entanglement hamiltonian matrix

Considering an interval A containing ¢ sites labelled by 1 < i < ¢, the generic element of
the ¢ x ¢ correlation matrix C'4(t) is obtained by just restricting to the rows and columns
corresponding to the sites in A, namely Cx(t);; = C(t);; in (110) with 1 < i,j < .
The entanglement hamiltonian of A after this global quench is the operator (65) with the
matrix 7" given by (68), i.e. [25]

T" =1log(Ca(t)™" —1). (112)

This implies that the relation between the eigenvalues 7, of T" and the eigenvalues (i
of Cy reads nmp = log(1/(x — 1), as already discussed in §3.3. For a generic value of t,
the entanglement hamiltonian matrix 7" in (112) is a complex ¢ x ¢ matrix. Since 7" is
hermitian at any ¢, its real part is symmetric and its imaginary part is antisymmetric.
Thus, we can focus on the p-th diagonal of these two matrices with p > 0.

The eigenvalues ¢, € (0,1) and many of them lie exponentially close to 0 and 1.
This forces us to work with very high precision in order to get finite results for (112). In
particular, the largest interval we considered has ¢ = 600 sites and we employed between
900 and 2500 digits, depending on the value of £. The needed working precision decreases
as time increases.

Also for this global quench, the configuration given by an interval in the infinite line
is symmetric with respect to the center of the interval and this leads to a symmetry in
the elements of the p-th diagonal. In particular, the odd diagonals of T are symmetric,
while the even ones are antisymmetric, namely 7}y, = Ty—i—pt1,—i—p+1 for odd p and
Tiivp = —Ty—i—pt1,4—i—p+1 for even p. The main diagonal vanishes identically.
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t =200 t =240 t =400

Figure 12: Temporal evolution of the real part of the entanglement hamiltonian matrix
(112) of an interval with £ = 400 in the infinite chain of free fermions after the global quench

(see §6).
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t =200 t =240 t =400

Figure 13: Temporal evolution of the imaginary part of the entanglement hamiltonian
matrix (112) of an interval with ¢ = 400 in the infinite chain of free fermions after the
global quench (see §6).

0.6

0.4

0.2

-0.2

-0.4

-0.6

0.08

0.06

0.04

0.02

-0.02

-0.04

-0.06

-0.08



~Tis/t

Entanglement hamiltonians in 1D free lattice models after a global quantum quench 43

: 0.4
L 1e=0.1 1€=0.1_ . t/t=04
o t€=0.15 03l © =015 . 1/0=045
S t=02 : =02 - 1/t=05
L5 . t/£=025 vors «t/€=025 < 1/{=06
S 116=03 020 =03 .t/l=1
1/(=035 T T ] P t/=035 . t/t=2
Sy = 01
N .
= 10f -t/€=05 9
t (=1 =00
& =2 b
I E -0.1
0.5 ~02
-03
0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
i/t i/t
0.30F . ¢/0=0.1 ) T T 0.15 1/€=01_ . t/t=04
° %:8'55 BV nzﬁzg.%s x%:g.zsts
t/t =0. o t/€ =0. ot/t =0.
025~ e=075 e 0.10r 7 7e=025 - 17¢=0%
S 1/t=03 @& =03 . i/t=1
0.20 % = 8’25 o A w~ Qgs " 1f=035 ~1jt=2
o tft = 0. 00 02 04 06 08 10 .
« 1]€ =045 =
0.15; C¢/0=05 3
ot)l=1 = 0.00
0.10f «t/t=2 b
E _00s
0.05 =
0.00 ~0.10 LA (R
~0.05 ol A L |
0.0 0.2 0.4 0.6 0.8 1.0 7700 0.2 0.4 0.6 0.8 1.0
i/t i/t

Figure 14: Chain of free fermions: Temporal evolution of the p-th diagonal with 1 < p <4
of the entanglement hamiltonian matrix (112) of an interval with ¢ = 400 after the global
quench. The insets zoom in on small values, in order to show the curves for large times.

In Fig. 12 and Fig. 13 we show respectively the real part of T" and the imaginary part
of T of an interval with ¢ = 400 for nine values of ¢t. For t — oo the imaginary part
of T vanishes (a detailed analysis of this asymptotic regime is performed in §6.4). We
also checked numerically that the imaginary part of T vanishes for ¢ — 0, as expected.
In the complex matrix T' the odd diagonals are real, while the even diagonals are purely
imaginary, like in the correlation matrix (110).

As time evolves, the amplitude of the elements of T' decreases; indeed, in Fig. 12 and
Fig. 13 a zoom is needed for large values of ¢ in order to appreciate the fact that T is non
vanishing. It is straightforward to observe that at the beginning the main contribution is
localised on the diagonals close to the main one and that, during the temporal evolution,
also the diagonals corresponding to longer range interactions become more important.

In Fig. 14 we show the temporal evolution of the first four diagonals in the
entanglement hamiltonian matrix. Notice that 7;,;;; is always positive, while in the
other panels also negative values occur. We find it worth remarking that all the curves
displayed in this figure vanish at the endpoints of the interval. The spatial inhomogeneity
of these diagonals is a characteristic feature of the entanglement hamiltonian matrix, if
compared with the correlation matrix restricted to the interval (see Fig. 19).

It is worth studying the limit ¢ — oo of the entanglement hamiltonian matrix, as
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Figure 15: Chain of free fermions: First diagonal of the entanglement hamiltonian matrix
(112) for four values ¢ after the global quench and for different values of £.

done [29,31,32] for a static configurations (see [34] for the continuum limit). In Fig. 15 we
consider increasing values of ¢ for some fixed values of t/¢. While the data have reached
the asymptotic curve when t/¢ = 0.1 and ¢/¢ = 0.5, it seems that larger values of ¢ are
needed to observe this collapse for higher values of ¢/¢.

In Fig. 12 and Fig. 13 it is straightforward to observe that the diagonals providing a
long range interaction become more relevant as time evolves by forming a band around the
main diagonal whose width 2dj increases with time. A similar feature has been highlighted
for the global quench in the harmonic chain discussed in §5.1. This observation naturally
leads to consider the antidiagonals in Re(7") and Im(7"), that are shown in Fig. 16 and
Fig. 17, making evident the occurrence of a band and the increasing of its width during
the temporal evolution. The width 2d, of this band can be defined by taking the distance
between the two minima for Re(7") and the distance between the minimum and the
maximum for Im(7"). In the bottom panels of Fig. 18 we show that dy(t) defined in
this way increases linearly with velocity equal to one as time evolves.

A similar band, whose width increases linearly with velocity equal to one as well,
occurs also in the temporal evolution of Re(C4) and Im(C4) whose antidiagonals display
a behaviour like the one shown in Fig. 16 and Fig. 17 for the entanglement hamiltonian
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Figure 16: Chain of free fermions: Antidiagonal of the real part of the entanglement
hamiltonian matrix (112) (see also Fig. 12) for various times and two different lengths. The
points corresponding to the two minima travel in opposite directions from the center of the
interval towards the endpoints with velocity equal to one (see also the bottom panels in
Fig. 18, where 2dy denotes the distance between these two minima).
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Figure 17: Chain of free fermions: Antidiagonal of the imaginary part of the entanglement
hamiltonian matrix (112) (see also Fig. 13) for various times and two different lengths. The
points corresponding to the maximum and to the minimum travel in opposite directions
from the center of the interval towards the endpoints with velocity equal to one (see also
the bottom panels in Fig. 18, where 2d, denotes the distance between the two extrema).
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Figure 18: Linear growth of the width of the bands occurring in the blocks of the
entanglement hamiltonian matrices after the global quench. The width 2dy of the various
bands is highlighted by the black arrows in the panels on the right, where the entanglement
hamiltonian matrices are shown at a typical value ¢ such that t/¢ € (0,1/2) (see Fig.2,
Fig. 12 and Fig. 13). In the left panels the slope of the dashed lines is one. Top: Harmonic
chain (see also Fig.5). Bottom: Chain of free fermions (see also Fig. 16 and Fig. 17).

matrix (see Fig. 19 for t/¢ = 0.2).
evolutions of 7" and of C4 is given by the inhomogeneity of the former one along

Thus, the main difference between the temporal

the diagonals, that can be observed by comparing the top panels in Fig. 19 with the
corresponding panels in Fig. 12 and Fig. 13.

6.2. Entanglement spectrum

Also for this global quench we find it worth considering the temporal evolution of some
quantities related to the entanglement spectrum. In the top left panel of Fig. 20, the
eigenvalues 7, = log(1/¢x — 1) of the hermitian matrix 7" obtained from the eigenvalues
(. of the reduced correlation matrix C4(t) are shown for different values of time. The
solid black curve corresponds to the asymptotic curve for ¢ — oo obtained in [49]. The
eigenvalues 7 occur in the expression (67) of the entanglement hamiltonian matrix 7'
Since 1, = —ny_x and only even values of ¢ are considered, we find it convenient to
label these eigenvalues as n, with k& = :i:%, j:%, R = 15_71. This gives np = —n_k. Since
Ka= > ke ﬂ fk, by adapting to this model the steps that provide (57) for the harmonic
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Figure 19: Chain of free fermions: Correlation matrix C'4 obtained by restricting (110)
to an interval of length ¢ at a fixed time after the quench given by ¢/¢ = 0.2. Top: Re(Cjy)
(left) and Im(C'4) (right) for £ = 400. Bottom: Antidiagonals of Re(C4) (left) and Im(Cjy)
(right) for two values of .

chain, one finds that the largest eigenvalue in the entanglement spectrum is given by the
configuration where all the modes with negative 7, are occupied. This leads to write the
largest eigenvalue as A, = [[[,(1 + e‘"’@)}_l [I.-o e ™, whose temporal evolution for
¢ =200 and ¢ = 400 is shown in the top right panel of Fig. 20.

The gaps in the entanglement spectrum can be computed from the single particle
entanglement energies 7, by considering the particle-hole excitations with respect to
the Fermi level. For the first gaps 0 < ¢1 < ¢» < ..., this analysis gives g1 = 277%,
g2 =11 + 13 and g3 = min{n% + s ,277% } The expressions for the higher gaps become
difficult to write as r increases, but this can be done numerically in a systematic way. For
these entanglement gaps we carry out an analysis similar to the one performed for the
corresponding quantities in the harmonic chain (see Fig. 7), whose results are collected
in the middle and bottom panels of Fig. 20. Also for this global quench the data about
the temporal evolution of the entanglement gaps display two distinct regimes separated
by t/¢ ~ 1/2. In the middle left panel of Fig. 20 we show the temporal evolution of the
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Figure 20: Chain of free fermions: Entanglement spectrum for an interval of length ¢ after
the quench discussed in §6. Top left: Single particle entanglement spectrum for different
values of ¢ (see also Fig. B.1 in [49]). Top right: Temporal evolution of the largest eigenvalue
of the entanglement spectrum. Middle left: Temporal evolution of the first gaps in the
entanglement spectrum. The legenda of this panel holds also in the remaining ones. Middle
right: Temporal evolution of ¢S54 (the insets zoom in on the two lower plateaux, showing
that at a smaller scale the data having ¢ = 200 and ¢ = 400 do not overlap). Bottom:
Temporal evolution of the ratios g,/g1 between the gaps in the entanglement spectrum (the

insets zoom in on higher plateaux). The limits of the curves for ¢ — oo and large values of

¢ are the strictly positive integers.
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inverse of the entanglement gaps, in order to highlight the linear growths predicted by
the CFT formula (76) before t/¢ ~ 1/2. The numerical value for 7y is obtained by fitting
the linear growth of the entanglement entropy through the CFT formula Sy ~ 27ct/(37)
of [44,63] (see §4) with ¢ = 1 for the free massless Dirac fermion, finding 79 ~ 3.26. This
allows to fit the slope of the linear growths in the middle left panel of Fig. 20 through
(76), finding A; = 1.224, Ay = 2.448 and A3 = 3.662. We find it curious that the
linear growths in the middle left panels of Fig. 7 and Fig. 20 basically coincide, despite
the diversity of the underlying models (notice that the values of 7y are different in the
two quenches).

As done for the harmonic chain, in order to reduce the influence of the parameter 7,
we consider the temporal evolutions of g.S4 and of the ratios g./g;. As for ¢S4 (middle
right panel of Fig. 20), the curves corresponding to different values of ¢ collapse much
better than the ones obtained for the quench in the harmonic chain (middle right panel
of Fig. 7) because the values of ¢ considered for this fermionic chain are large enough.
Nonetheless, the zooms in the insets show that these curves are distinguishable.

Also for this quench the temporal evolutions of the ratios g,/¢; in the entanglement
spectrum (bottom panel of Fig. 20) display the most interesting features. When ¢/¢ < 1/2,
curves having different ¢’s nicely collapse identifying neatly plateaux that correspond to
strictly positive integers. The same positive integers are obtained also in the asymptotic
regime of long time and large ¢. We checked numerically this result by plugging into
the code employed to study g¢,/g; the asymptotic values for n; found in [49], that will
be reported later in §6.4 (see (117)). The plateaux before t/¢ ~ 1/2 and for long time
should correspond to the ratios between the conformal dimensions in the spectrum of the
underlying CF'T, and the data agree with the expected results for a massless Dirac fermion
with free boundary conditions. We remark that in our analysis we considered only the
particle-hole excitations. It would be interesting to improve this numerical analysis by
including higher gaps or by considering other configurations.

In some spin chains at the critical point, the entanglement spectrum for an interval
at equilibrium has been studied numerically in [37] finding the conformal spectrum of
a boundary CFT with free boundary conditions. In the Ising model, the entanglement
spectrum after a global quench has been considered in [56] and also in this model the gaps
close as time evolves when the evolution is determined by a critical hamiltonian.

6.3. A contour function from the quasi-particle picture

In order to construct a contour function for the entanglement entropy by employing the
quasi-particle picture, we need to know the dispersion relation of the model after the
quench and the entropy density in momentum space of the quasi-particles (see §5.3),
which are quantities corresponding to the entire system. The dispersion relation of the
hamiltonian (109), which determines the evolution of the system after the quench, is
given by w(f) = cos @, where —m < 0 < 7 [73]. In order to compute the entropy density,
let us consider the asymptotic state of the system after the quench. For t — oo, the
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Figure 21: Chain of free fermions: Temporal evolution after the global quench of the
contour for the entanglement entropy of an interval made by ¢ sites, evaluated from (31),
(71) and (72). The inset shows the entanglement entropy for certain values of ¢, according
to the same colour code of the main plot. The black dashed lines are obtained from the
quasi-particle picture, by using (104) with fo(x) = 0 and other expressions discussed in
§6.3. The blue dashed curve is obtained from (119) and it does not change significantly for
the values of ¢ corresponding to these data.

correlators are given by (111) with ¢ and j labelling two generic sites of the infinite chain.
Considering a periodic chain made by an even number L of sites, a circulant matrix 6’1(30)
with 4, j € [-L/2, L/2] is obtained, whose eigenvalues are (, = [1 + cos(27k/L)] /2, with
k € [—-L/2,L/2]. Plugging these eigenvalues into (71), one finds the asymptotic entropy

L/2

§leo) — zkzgﬂ{ cos? (%k) log {cos (%k)} + sin? (%) log [sin (%kﬂ } . (113)

After introducing § = 27k/L, we take the limit L — oo of S /L with S given by
(113), and the result provides the entropy density s> (6) as follows

— %/ [(008(9/2))2log[cos(6/2)] + (sin(9/2))2log[sin(9/2)]] df = / 5 (9) df
i i (114)
These observations lead to construct a contour function from the quasi-particle picture
by employing s () and v(#) = w'(f) = sin 6 into (104), being 6 € [, 7].
In Fig. 21 we show the temporal evolution of the contour for the entanglement entropy
evaluated through the prescription of [40] discussed in §3.3, namely by employing (29),
(30), (70) and (72). Notice that the data corresponding to different values of ¢ collapse
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on the same curves. The black dashed curves are obtained from (104) with fy(z) = 0 and
(114) as explained above: they display perfect agreement with the data, except in the
neighbourhoods of the endpoints. Similarly to the case of the harmonic chain described
in §5.3, the divergencies of the contour function close to the endpoints can be reproduced
by choosing a suitable expression for fo(x) (e.g. (82) with n = 1 and the proper 7, as
done for the harmonic chain in the right panel of Fig. 10). The qualitative behaviour
of the curves in Fig. 21 is the same observed in [40] for a different global quench and it
is roughly reprodiced also by the naive CFT formula (81) discussed in §4 (see the right
panel in Fig. 1). The blue dashed line in Fig. 21 corresponds to the asymptotic regime
t — oo discussed below in §6.4. Also for this global quench the numerical data display
linear divergencies close to the endpoints of the interval that are independent of time.

In Fig. 22 we show the temporal evolution of (33) with n = 1 for the same choices
of (i1,12) considered in Fig. 11. The qualitative behaviour of the curves is similar to
the corresponding curves obtained for the global quench in the harmonic chain, hence
the qualitative arguments reported §5.3 about the changes of the slopes holds also in
this case. On the other hand, for ¢t/¢ > 1/2 the asymptotic values for long times are
different from the ones observed in the harmonic chain, as expected from the fact that
the asymptotic value of the entanglement entropy depends both on the model and on the
initial state. We find worth remarking that for the chain of free fermions we have access
to larger values of ¢ with respect to the harmonic chain, hence the curves corresponding
to different values of ¢ display a better collapse than the ones shown in Fig. 11 for the
harmonic chain, capturing the asymptotic curves for ¢ — oo. The black dashed lines,
obtained from the quasi-particle picture analysis by using (32), (33) and (104), display a
very good agreement with the numerical data. The data are also compared against the
corresponding naive CFT expression (85) (grey dotted-dashed curves), where 75 = 3.26
has been used.

6.4. Long time regime

In the asymptotic regime ¢ — oo, the imaginary part of the correlation matrix (110)
vanishes, as already remarked above. In particular, C;;(t) — CZ»(;;O) being C’i(zo) the real
symmetric and tridiagonal matrix defined in (111), which has the same value along a given
diagonal. Because of the simple structure of o) analytic expressions for its eigenvalues

J
and for the corresponding eigenvectors can be written. The eigenvalues of C(>) read [49]
1+ cos b, mk
=— 0, = ——. 115
G 2 (+1 (115)

In order to study the matrix occurring in the entanglement hamiltonian, we also need
the eigenvectors corresponding to the eigenvalues (115), that are given by

~ sin(r )
uil(r) = @+ 1)/2

where the normalisation condition )" wug(r)* = 1 has been imposed. Then, the orthogonal

1<r </ (116)

matrix U having the eigenvector uy(r) in (116) as k-th column can be constructed and, by
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Figure 23: Chain of free fermions: Long time regime after the global quench (see §6.4).
Top: First diagonal (left) and third diagonal (right) of the entanglement hamiltonian matrix
of an interval with ¢ = 200. The data points have been found by using (67), while the solid
black curves correspond to (118) with p =1 (left) and p = 3 (right). Bottom: Contour for
the entanglement entropy for two values of ¢ and two (large) values of ¢ for each length.
The data points, obtained from (31), (71) and (72), agree with the solid lines found from
(119) with n = 1.

employing this matrix in (67), the generic element of the ¢ x ¢ entanglement hamiltonian

matrix reads
¢
T ;= Z M sin(ify) sin(joy) e = 2log[tan(;,/2)] (117)
k:

where 1 < 7,7 < £ and the single particle entanglement energies have been obtained from
(68) and (115). Notice that sin(rf;) = 0 when r = 0 or r = L+ 1. The matrix 7" in (117)
is symmetric, as expected; hence we can focus on its p-th diagonal with 0 < p < ¢ — 1,
whose generic element is

¢
Tiitp = g— Z (cos(p Or) [1 — cos(2i0y)] + sin(p Oy,) sm(2@9k)> 1<i<l—p.
k=1
(118)



20— = ==

_Ti,i+1

1.5 1992

1 4 0.0 0.2 0.4 0.6 0.8 1.0 030

Entanglement hamiltonians in 1D free lattice models after a global quantum quench 55

0.65
£ =100 ¢ =600 0.60 € =100 ¢ =600
£=200 — ¢=1000 ) £=200 — ¢=1000

— ¢=300 — ¢=2000 0.55 — ¢=300 — ¢=2000

2000f— — — — — — — — —— — — — — — —

= 0.50

1.998

1996 0.45

=Tz

1.994 040
0.35

1.990

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
i/t i/t

0.55 £=100 — £=600
£=200 — £=1000
— £=300 — €=2000

0.386205} ‘ ‘ E
0.50

0.386295F ]

0.386295F ]

0.386295f ]
0.45

0.386295F ]

0.386294f i

0.386294f ]

0.0 02 0.8 1.

0.40
0

sa(1)

0.4 0.6

0.0 0.2 0.4 0.6 0.8 1.0
i/t
Figure 24: Chain of free fermions: ¢ — oo in the long time regime after the global
quench (see §6.4). Top: First diagonal (left) and third diagonal (right) of the entanglement
hamiltonian matrix for increasing values of ¢. The solid curves are obtained from (118) and
the dashed lines correspond to (120). Bottom: Contour for the entanglement entropy. The

solid lines are obtained from (119) with n = 1, while the horizontal dashed line corresponds
to (121).

Notice that 6, .1 = m — 0, and this implies ny_,,1 = —n,. By using this property and
splitting the sum in (118) into a sum from 1 to /2 and a sum from ¢/2 + 1 to ¢, one
can show that the even diagonals vanish, namely 7;;,5, = 0 for non negative integers p.
Furthermore, simple trigonometric identities allow to observe that the p-th diagonal is
symmetric with respect to its middle point, namely Ty_;_pi1—it1 = T} itp-

In the top panels of Fig. 23, the expression (118) has been checked against numerical
data corresponding to large values of t for p = 1 (left) and p = 3 (right). The agreement
is satisfactory, but the insets show that larger values of ¢ should be taken in order to
improve it.

The contour for the entanglement entropies can be written by employing (31), (72)
and (116), together with the observations made above. This gives

L

000 = 3w = 7 3 sulGe) [sintit )] (119)

k=1
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where s,((x) is obtained by evaluating (70) or (71) for the (}’s given in (115). The
expression (119) corresponds to the black dashed curve in Fig.21 and to the solid lines
in the bottom panel of Fig. 23. Agreement is observed with the data points obtained for
large values of time.

It is useful to consider the limit ¢ — oo of the above expressions holding in the
asymptotic regime of long time. As the entanglement hamiltonian matrix element (118),
by neglecting the highly oscillating terms coming from cos(2i6;) and sin(2i6y), for ¢ far
enough from 1 and ¢ — p, one finds (see also section 7.1 of [1])

T ! / "0(0) cos(po)dd = 4 ° evenp (120)
— A —_— — — COS B
e T Jo 7 b 2/p odd p
where n(0) = 2log[tan(0/2)] (see (117)).

The limit (120) is checked in the top panels of Fig. 24 for p = 1 (left) and p = 3
(right).

As for the entanglement entropy, from (71) and the eigenvalues in (115), one obtains

S 1 ["

TA — —/ s(0)dfd = —1 +log 4 ~ 0.386 {— 0 (121)
T Jo

that is the flat value reached for ¢ — oo both in the inset and in the main plot of Fig. 21.

Also the horizontal dashed line in the bottom panel of Fig. 24 corresponds to (121). The

consistency of this result can be checked by employing (119), that for £ — oo gives

_2 /O i [(008(9/2))210g[cos(9/2)] + (Sin(9/2))21og[sin(0/2)]]d0 — l4logd (122)

™

where we used that 1/2 is the mean value constant coming from [sin(if})]?. For the Rényi
entropies, from (70) one finds

51(4”) 1 T 2n 2n
that can be evaluated for explicit values of n, finding e.g. log(24 — 164/2) for n = 2 and
log(4/3) for n = 3.

The previous analysis has provided the values of the entanglement hamiltonian and
of the contour for the entanglement entropies in the central part of the interval. In the
following we improve this analysis by capturing also the behaviour of these quantities
close to one of the endpoints. Here we only mention the results, reporting the details of
their derivation in the Appendix D§.

When ¢ — oo, the expression in (117) becomes

0 even |i £ j

T, = 1 1 o 124
J 2 — — —— odd |i & j (124)
i+j5  i—j

§ These results and their derivation reported in the Appendix D have been obtained by Ingo Peschel.
We are grateful to him for allowing us to include his analysis in this manuscript.
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Figure 25: Chain of free fermions: ¢ — oo in the analytic expressions for the long time
regime after the global quench (see §6.4). Top: First diagonal (left) and third diagonal
(right) of the entanglement hamiltonian matrix. The solid curves are obtained from (118),
while the black and the red dashed lines correspond respectively to (120) and (124). Bottom:
Contour for the entanglement entropy. The solid lines are obtained from (119) with n = 1,
while the black and the red dashed lines correspond respectively to (121) and (125).

where 1 <7 </ and 1 < j < /. This implies that the generic element of the p-th diagonal
is T} i+p = 0 when p is even and T;,., = —4i/[p(2i + p)] when p is odd. Taking i — oo
in these expressions, one finds T}, ~ —2/p + 1/i + O(1/i?) for odd p; hence (120) is
recovered. A numerical check of (124) is reported in the top panels of Fig. 25.

The contour for the entanglement entropy can be analysed in a similar way. Taking
¢ — oo in (119) with n = 1, one obtains

sa(i) = logd — 1+ (125)

2i(4i% — 1)
being i = 1,2,3,... up to infinity. The limit i — oo of this expression gives s(i) —
log4 — 1+ O(1/:*), which allows to recover (122) and also to find the power law decay
O(1/43) for the contour function s4(i) close to the endpoint. The expression (125) has
been checked numerically in the bottom panel of Fig. 25.

In this analysis the interval becomes a semi-infinite line; hence we can study the
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behaviour of the entanglement hamiltonian matrix and of the contour function only
around one of the endpoints of the interval.

7. Conclusions

We studied the temporal evolution of the entanglement hamiltonian of an interval after
a global quantum quench in two simple free lattice models: the harmonic chain and a
chain of free fermions. In the harmonic chain (in the thermodynamic limit) we considered
a quench of the frequency parameter such that the evolution hamiltonian is massless.
In the chain of free fermions at half filling, we explored the global quench introduced
in [49], where the initial state is the ground state of a dimerised chain and the evolution
hamiltonian is determined by the homogenous hopping hamiltonian. In these free models,
the time dependent entanglement hamiltonian is a quadratic operator; hence it is fully
determined by a matrix that can be written explicitly as a function of the matrix whose
elements are the two point correlators [2,23-25,28]. The entanglement hamiltonian
matrix can be decomposed in terms of a diagonal matrix containing the single particle
entanglement spectrum and another matrix that is symplectic for the harmonic chain
or orthogonal for the chain of free fermions. The single particle entanglement spectrum
and the matrix occurring in this decomposition can be employed to construct also a
contour for the entanglement entropies [40,42], that encodes information about the spatial
structure of the bipartite entanglement. For static configurations, some entanglement
hamiltonian matrices in the harmonic chain and in a chain of free fermions have been
explored in [2,23-25,28-34].

In this manuscript we explored the temporal evolution of the entanglement
hamiltonian matrices and of the contours for the entanglement entropy of an interval made
by ¢ sites after the global quenches mentioned above. During the temporal evolution, the
entanglement hamiltonian matrix is not block diagonal in the harmonic chain and it is
complex in the chain of free fermions. All the diagonals of the ¢ x ¢ blocks composing
the entanglement hamiltonian matrix in the harmonic chain and of the ¢ x ¢ real and
imaginary parts of the entanglement hamiltonian matrix in the chain of free fermions
(with the obvious exception of the ones that vanish at half filling) display a non trivial
temporal evolution. Bands of diagonals around the main diagonal in these ¢ x ¢ matrices
can be identified whose width growths linearly with velocity equal to one. This is observed
also in the covariance matrix for the harmonic chain and in the correlation matrix for the
chain of free fermions, where all the elements of each diagonal are equal.

The analytic results obtained in CFT for the entanglement hamiltonian of a semi-
infinite line [15] have been exploited to write expressions for the finite interval in the
continuum limit that reproduce qualitatively the behaviour of the numerical data of some
quantities in some regimes. In particular, the linear growth of the gaps in the entanglement
spectrum before t/¢ ~ 1/2 and the qualitative temporal evolution of the contour for the
entanglement entropy have been obtained. In our numerical analysis we have also observed
that the temporal evolution of the ratios of the gaps in the entanglement spectrum can be
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employed to read the ratios in the conformal spectrum of the underlying CFT when the
evolution hamiltonian is critical. This observation holds both for ¢/¢ < 1/2 (as predicted
in [15]) and in the asymptotic regime of long time. Furthermore, it seems true also for
different initial states. It would be interesting to further explore this idea by considering
global quenches governed by different critical hamiltonians.

The quasi-particle picture of [44] has been employed to obtain semi-empirical analytic
expressions of the contour for the entanglement entropy, finding reasonable agreements
with the numerical data, in particular for the chain of free fermions, where larger
subsystems have been studied. For the harmonic chain, the formula for the contour
is valid also for the global quenches where the mass in the evolution hamiltonian is non
vanishing; hence it would be interesting to test it also for these protocols. For the global
quench in the chain of free fermions, the entanglement hamiltonian matrix and the contour
for the entanglement entropy have been studied in the asymptotic regime of t — oo.

The analysis of entanglement hamiltonians and the contours for the entanglement
entropies can be extended in many interesting directions. For instance, it would be useful
to find some analytic expressions describing the asymptotic regime of long time for the
global quench considered here in the harmonic chain, like the ones discussed in §6.4 in
the chain of free fermions. Other kinds of global quenches can be considered or also
quenches of different nature, like the local quenches [48]. An interesting development
is given by more complicated bipartitions, like the one where A is made by disjoint
intervals [13, 15, 33] whose entanglement entropies have been studied in CFT, lattice
models [78] and holography [79]. Connections could be established also with some recent
results in harmonic lattices [80].

It is worth studying the temporal evolutions of the entanglement hamiltonians and
of the contours for the entanglement entropies after global and local quenches also
in interacting models and in higher dimensions. Indeed, in this manuscript we have
highlighted the role of the entanglement gaps to obtain the conformal dimensions of
the underlying CFT when the evolution hamiltonian is critical; hence it would be
interesting to test this idea also in interacting models. In the context of the gauge/gravity
correspondence, the bit threads approach to the holographic entanglement entropy [81]
suggests a possible gravitational dual of the contour for the entanglement entropy [82].

The entanglement hamiltonians and their dynamics are very important also because
they are the building blocks to explore other interesting quantities that capture different
aspects of entanglement. For instance, the bipartite entanglement of mixed states can be
quantified through the partial transpose and the logarithmic negativity [83], which have
been studied also in quantum field theories [84] and in some lattice models [85]. Other
interesting directions to explore concern excited states [86] and quantities involving them,
like e.g. the relative entropy [87].



Entanglement hamiltonians in 1D free lattice models after a global quantum quench 60

Acknowledgements

It is our pleasure to thank Andrea Coser, Viktor Eisler, Ingo Peschel, Giulia Piccitto and
Luca Tagliacozzo for important insights. We are also grateful to Horacio Casini, Fabian
Essler, Paul Fendley, Juan Maldacena, Sara Murciano, Giuseppe Mussardo, Mohammad
Ali Rajabpour, Germéan Sierra, Hubert Saleur and Jacopo Surace for useful discussions.
We thank an anonymous referee for observations that have led us to the contour function
from the quasi-particle picture discussed in §6.3. This work started at the Galileo Galilei
Institute (GGI) in Florence during the programme Entanglement in Quantum Systems
in June and July 2018: we acknowledge GGI for financial support and the stimulating
environment. RA thanks Associazione di Fondazioni e di Casse di Risparmio (ACRI) for
financial support.

Appendices
A. On the Williamson’s decomposition of H4

In the harmonic lattices described in §2, the entanglement hamiltonian matrix (13) and
its equivalent form (15) can be obtained from its Williamson’s decomposition (11). In
this Appendix we discuss the details of this derivation.

By employing the Williamson’s decomposition (5) of the reduced covariance matrix
Y4, one finds

iD,J = (JW)iJys (JW) ™ iJ Dy = (W'J) Liyad (W) . (126)
Then, since (iDyJ)? = (iJD,)* = D?, we have that
D = (iD,J)* = (iJD,)* D = (iD,J)* i =iJ (iJDy)* . (127)

Considering a generic even function f,(z), the first expression in (127) leads to f.(D,) =
f.(iDyJ) = f.(iJD,). By employing (126) into this result, one obtains

fo(Da) = (JW) fo(iT7a) (JW)H = (W)™ fo(iyad) (W'T). (128)

Similarly, for a generic odd function f,(z), the second expression in (127) implies that
f.(D,) = f.(iD,J)iJ =1iJ f,(iJD,). This result combined with (126) leads to

fo(Da) = (JW) fo(iTya) (JW) T = 1T (WEI) ™ £, (ivad) (W) . (129)

Another useful relation can be derived by noticing that (iJy4)" = J (iyaJ)"J ! for
any integer n > 0. This observation implies that, for a generic function f(z), we have

fiJva) = =J f(ivad) J . (130)

The relation (12) gives &, = 2arccoth(2D,), that is an odd function of D,; hence, by
specifying (129) to this case, we find that

Er = (JWY) T2 J arccoth(2ivaJ) | (W*'J). (131)
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By isolating the matrix within the square brackets, one obtains the first expression in
(13) with H4 written through its Williamson’s decomposition (11) and Wy given by (14).
The second expression in (13) can be easily found from the first one by using (130).

Let us observe that, from the relations (11) and (10), we have J'*HsJ = W'E,W,
which tells that the Williamson’s decompositions of v4 and J'H, J involve the same
symplectic matrix V.

An equivalent way to express the entanglement hamiltonian matrix H,4 in terms of
74 is given by (15). Indeed, from the Williamson’s decomposition of Hy4 in (11) with Wy
given by (14) and (10), by using that & = h(D,)D,, with h(y) defined in the text below
(15), one finds

Hy =W I (D) Dy WJ = [(JW) (D) (JW)]JH(WE D, W) J . (132)

In the second step the identity matrix 1 = W W* has been properly inserted in order to
recognise the Williamson’s decomposition (5) for 74 and the relation (128) for the even
function h(y), that allow to write the last expression of (132) in the form reported in the
last step of (15). Similarly, by inserting the identity matrix 1 = (W*J)~!(W*'J) into the
first expression in (132) in the proper way, we find that it can written as follows

Hy=W'D,(W*) (W) h(D,) (W T) ] (133)

where, by using (5) and (128), one recognises the first expression in (15).
Another equivalent expression for the entanglement hamiltonian matrix H4 can be
found by observing that the relation (12) between D and & gives

D, = % coth(&,/2) &, = log lcoth (%log@ Dd))] . (134)
By employing these relations, (5), (10) and (11), we arrive to
Dy= (W), Wl =Wy, W Es=(WH TH,W ' =WH,W'.  (135)
Plugging these expressions into (134), one easily finds
1 1 ¢
YA = §W [Coth(gVVHAW)}W (136)

and

Hy = W' {log[coth <% log (2 WWAWt))} } w (137)

which provides another form to express the relation between the reduced covariance matrix
v4 and the entanglement hamiltonian matrix H 4.



Entanglement hamiltonians in 1D free lattice models after a global quantum quench 62

B. On the numerical determination of the symplectic matrix W

The symplectic matrix W occurring in the Williamson’s decomposition (5) of the reduced
covariance matrix v4 plays a crucial role throughout this manuscript. In this Appendix
we discuss the method employed to construct W numerically.

The reduced covariance matrix 74 is symmetric and positive definite; hence, according
to the Cholesky decomposition, there exists a unique way to write y4 as follows

va =L, L} (138)
where L., is a real lower triangular matrix. Plugging (138) into (9), one obtains
(JL,)'7a (JL,) = (WLH) ' DY (WLSY) = (WL,) "' D} (WL,).  (139)

The first expression in this sequence of equalities is a real symmetric matrix that can
be diagonalised by an orthogonal matrix W, namely (JL, ) ya(JL,) = W;lA W, being
A a diagonal matrix. Comparing this formula with (139), we find that A = D? and
W, = NWL.* where N is an invertible diagonal matrix. By imposing that W, is

Y Y
orthogonal, one obtains N = Dj/ T hus, the matrix W can be written as

W ="D,"?W, Lt . (140)

By employing the fact that W, is orthogonal and the Cholesky decomposition (138), it
is straightforward to verify that (140) satisfies (5), as expected. The fact that (140) is
symplectic can be checked by following the procedure adopted to verify this property in
the proof of the Williamson’s theorem given in [70]. As consistency check, one can repeat
this analysis starting from the last expression in (139) and this leads (140) again.

In our numerical analysis we have constructed W by employing (140) and Wolfram
Mathematica. In particular, given the reduced covariance matrix 74, the software provides
the unique matrix L, and the orthogonal matrix W, that diagonalises the symmetric
matrix (JL.)" 4 (JL,). Given these two matrices and the symplectic spectrum obtained
from (9), the symplectic matrix W is constructed as in (140).

C. Block diagonal entanglement hamiltonians in harmonic lattices

In the harmonic lattices and for static configurations, both the reduced covariance matrix
74 and the entanglement hamiltonian matrix H,4 are block diagonal [2,29,30,33]. In this
Appendix we specify the results discussed in §2.1 to the simpler case.

When v4 = Q@ P is block diagonal, namely R = 0 in (24), the symplectic matrix W
in the Williamson’s decomposition (5) of 4 is block diagonal as well, namely W = U®V/;
hence the Williamson’s decomposition of 74 can be written as

Q=U'DU P=V'DV. (141)
The condition that W and W' are symplectic leads respectively to
Uvt=vUu'=1 UvV=vu=1 (142)
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telling that U= = V* and V~! = U*. In particular, U and V are not orthogonal matrices.
The relations (141) do not provide the diagonalization of the real and symmetric matrices
@ and P because U and V are invertible but not orthogonal. Moreover, being W = U@V,
we have that (10) becomes W=VaU.

The matrices (9) to diagonalise in order to find the symplectic spectrum simplify to
(iJva)? = (PQ) ® (QP) and (iyaJ)? = (QP) ® (PQ) when 74 is block diagonal. From
this observation and (142), the first expression in (9) gives

QP=U'D*V =V 'D*V PQ=V'D*U=U""'D*U. (143)

When 7,4 is block diagonal, the entanglement hamiltonian matrix H 4 is block diagonal
as well. In particular, from the above remarks and J*v,J = P & @, one observes that the
expressions in (15) reduce to [2]

Ha=M @ N = (h(v/PQ) & h(v/QP)) (P& Q) (144)
— (PoQ)(MVQP) o n(VPQ)). (145)

The equivalence of these two expressions can be verified by transposing one of them and
employing that M and N are symmetric combined with (v/QP)' = /PQ, that can be
easily obtained from the fact that also () and P are symmetric. Another useful expression

for the block diagonal entanglement hamiltonian matrix H 4 can be obtained by specifying
(28) to this simpler case where W =U &V (i.e. Y = Z =0 in (25)). This gives

Hy=(V'EV)® (U'EV). (146)
Notice that, for a block diagonal 74, in (138) we have L, = Lg @ Lp; therefore also

the expressions reported in the Appendix B simplify.

D. On the regime of long time and large ¢ for the fermionic chain

In this appendix we discuss the derivation of the expressions (124) and (125) about the
limit ¢ — oo of the regime of long time for the quench of the fermionic chain (see §6.4).

For a given function f, the large ¢ limit of the sum H% Zi:l f(0y) gives foﬂ %f(@).
Thus, for (117) in this limit we get

Ty = = | 520(0) [cos (00i-+.3)) = cos (0 = ) (147)

where 7(f) has been defined in the text below (120). Splitting (147) as a sum of two
integrals and focussing on one of them, we have

0 even (i % j)

™ df Lo 2 Tsin(@(£j))
_/0 ?”(Q)COSWWJ))_W(MJ')/O sng 1T 2
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where an integration by parts has been performed, observing that the boundary terms
vanish. The expression (124) is obtained by employing (148) into (147).

As for the contour for the entanglement entropy, in the limit ¢ — oo we find that
(119) becomes

sa(i) = ! /07T dfs(0)[1 —cos(20i)] = logd —1— 1 /7r df s(0) cos(201) (149)

U T Jo

where the expression for s() introduced in (122) can be written as
s(0) = —log((sinf)/2) + cosf log((tan6)/2). (150)

Plugging this expression into (149), an integral to compute is given by

l/Oﬂlog((sinﬁ)/Q) cos(20i)df = — ! /07r sin(20) df = ! (151)

T 211 tan 6 24

where an integration by parts has been performed (the corresponding boundary terms
vanish). The remaining integral becomes a sum of two simpler integrals once the product
cos(f) cos(20i) is written as a sum of two single cosine functions. These two integrals in
(149) can be evaluated as follows

(7 1 T sin(6 p) 1
- — 0 1) log((tan6)/2) dd = df = — 152
5 | oo og((tan0)2) a0 = s [ =@ - i)
where = 247 £ 1 is an odd positive integer. By employing (151) and (152) into (149),
the expression (125) is obtained.

As consistency check for (125), let us recover the value of the entanglement entropy
found in (121) by summing (125) over the sites of the interval A. Since A has ¢ sites, the
first term of this sum gives ¢ (log4—1). Then, by using that y -, m = 3(log4-1)
and taking into account that the interval has two endpoints, we obtain )., s4(i) =
(¢ +1)(log4 — 1), which is the result reported in (121).
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