85 research outputs found

    Integrated control of vector-borne diseases of livestock--pyrethroids: panacea or poison?

    No full text
    Tick- and tsetse-borne diseases cost Africa approximately US$4-5 billion per year in livestock production-associated losses. The use of pyrethroid-treated cattle to control ticks and tsetse promises to be an increasingly important tool to counter this loss. However, uncontrolled use of this technology might lead to environmental damage, acaricide resistance in tick populations and a possible exacerbation of tick-borne diseases. Recent research to identify, quantify and to develop strategies to avoid these effects are highlighted

    Trematode infections in cattle in Arumeru District, Tanzania are associated with irrigation

    Get PDF
    Background The relationship between the environment and infection of cattle with trematodes was studied at Arumeru District, Arusha Region, northern Tanzania. Randomly selected villages were grouped into three cattle management strata, (i) zero-grazing (ZZ) (ii) communal grazing without irrigation (ZC) and (iii) communal grazing with irrigation (ZCI). Methods Faecal samples were collected from 241 cattle, and processed using the Flukefinder® method. Snail intermediate hosts were collected with a snail scoop from the water bodies in the study villages and identified morphologically. Results The overall prevalence of F. gigantica, paramphistomes and S. bovis were 33%, 37% and 2% respectively. Prevalence for F. gigantica, paramphistomes, and S. bovis for each stratum were, zero-grazing (ZZ) (29.7%, 36.0% and 0%), communal grazing without irrigation (ZC) (6.3%, 15.0% and 3.8%) and communal grazing with irrigation (ZCI) (57.7%, 56.7% and 1.0%) respectively. The differences between strata were significant for F. gigantica (p < 0.001) and paramphistomes (p < 0.05) but not for S. bovis. Irrigation could account for the high prevalence of F. gigantica and paramphistomes in the ZCI stratum as compared to the ZZ and ZC strata. The higher prevalences of F. gigantica and paramphistomes in the ZZ stratum compared with the ZC stratum were unexpected and attributed to the practice of farmers in some ZZ stratum villages buying fodder for their cattle obtained from pastures in ZCI villages. Conclusion Trematode infections in cattle are prevalent in Arumeru District. Fasciola gigantica and paramphistomes are associated with grazing in areas with irrigation of crops. Zero-grazing of cattle does not necessarily prevent the risk of infection

    Associations between trematode infections in cattle and freshwater snails in highland and lowland areas of Iringa Rural District, Tanzania

    Get PDF
    SUMMARYThe epidemiology of trematode infections in cattle was investigated within highland and lowland areas of Iringa Rural District, in southern Tanzania. Fecal samples were collected from 450 cattle in 15 villages at altitudes ranging from 696 to 1800 m above the sea level. Freshwater snails were collected from selected water bodies and screened for emergence of cercariae. The infection rates in cattle wereFasciola gigantica28·2%, paramphistomes 62·8% andSchistosoma bovis4·8%. Notably, prevalence of trematode infections in cattle was much higher in highland (altitude &gt; 1500 m) as compared with lowland (altitude &lt; 1500 m) areas and was statistically significant (P-value = 0·000) forF. giganticaand paramphistomes but not forS. bovis. The snails collected includedLymnaea natalensis, Bulinus africanus, Bulinus tropicus, Bulinus forskali, Biomphalaria pfeifferi, Melanoides tuberculataandBellamya constrictawith a greater proportion of highland (75%) than lowland (36%) water bodies harbouring snails. Altitude is a major factor shaping the epidemiology ofF. giganticaand paramphistomes infections in cattle in Iringa Rural District with greater emphasis upon control needed in highland areas.</jats:p

    Spatial epidemiology of hospital-diagnosed brucellosis in Kampala, Uganda

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A retrospective case-control study was undertaken to examine the spatial risk factors for human brucellosis in Kampala, Uganda.</p> <p>Methods</p> <p>Information on age, sex and month of diagnosis was derived from records from plate agglutination tests undertaken at Mulago Hospital, Kampala. Information on Parishes (LC2s) where patients reside was sourced from the outpatient registration book. In-patient fracture cases were selected for use as controls using 1:1 matching based on the age, sex and month of diagnosis. The locations of cases and controls were obtained by calculating Cartesian coordinates of the centroids of Parish level (LC2) polygons and a spatial scan statistic was applied to test for disease clustering. Parishes were classified according to the level of urbanization as urban, peri-urban or rural.</p> <p>Results</p> <p>Significantly more females than males were found to show sero-positivity for brucellosis when compared with the sex ratio of total outpatients, in addition female brucellosis patients were found to be significantly older than the male patients. Spatial clustering of brucellosis cases was observed including around Mulago Hospital (radius = 6.8 km, <it>p </it>= 0.001). The influence of proximity to the hospital that was observed for brucellosis cases was not significantly different from that observed in the controls. The disease cluster was confounded by the different catchment areas between cases and controls. The level of urbanization was not associated with the incidence of brucellosis but living in a slum area was a significant risk factor among urban dwellers (odds ratio 1.97, 95% CI: 1.10-3.61).</p> <p>Conclusions</p> <p>Being female was observed to be a risk factor for brucellosis sero-positvity and among urban dwellers, living in slum areas was also a risk factor although the overall risk was not different among urban, peri-urban and rural areas of the Kampala economic zone.</p

    Molecular prevalence of Coxiella burnetii in bulk-tank milk from bovine dairy herds :systematic review and meta-analysis

    Get PDF
    Coxiella burnetii is an obligate intracellular zoonotic bacterium that causes Q fever. Ruminants, including cattle, are broadly known to be reservoirs for this bacterium. Since 2006, many research groups have evaluated the herd-level prevalence of C. burnetii in cattle by molecular techniques on composite milk samples. This study explored the global C. burnetii herd-level prevalence from studies done on bovine bulk-tank milk (BTM) samples using PCR-based analysis. Also, moderators were investigated to identify sources of heterogeneity. Databases (CAB Abstracts, Medline via Ovid, PubMed, Web of Science and Google Scholar) were searched for index articles on C. burnetii prevalence in BTM samples by PCR published between January-1973 and November-2018. Numerous studies (1054) were initially identified, from which seventeen original publications were included in the meta-analysis based on the pre-defined selection criteria. These studies comprised 4031 BTM samples from twelve countries. A random-effects model was used because of considerable heterogeneity (I2 = 98%) to estimate the herd-level prevalence of C. burnetii as 37.0%(CI95%25.2–49.5%). The average herd size appeared to account for a high level of the heterogeneity. No other moderators (geographic location, gross national income or notification criteria for Q fever) seemed to be determinant. This systematic evaluation demonstrated a high molecular prevalence of C. burnetii in BTM samples both in European and non-European countries, evidencing a widespread herd-level circulation of this agent in bovine dairy farms around the world. Meta-regression showed herd size as the most relevant moderator with the odds of a BTM sample testing positive doubling with every unit increase

    Sleeping sickness in Uganda:a thin line between two fatal diseases

    Get PDF
    Objective To determine, through the use of molecular diagnostic tools, whether the two species of parasite that cause human African trypanosomiasis have become sympatric. Design Blood sampling of all available patients between June 2001 and June 2005 in central Uganda and between July and September 2003 in northwest Uganda and analysis of subcounty sleeping sickness records in Uganda between 1985 and 2005. Setting Sleeping sickness treatment centres in central and northwest Uganda and in south Sudan. Participants Patients presenting at the treatment centres and diagnosed as having sleeping sickness. Main outcome measure Classification of parasites from patients from each disease focus as either Trypanosoma brucei rhodesiense (acute form) or T b gambiense (chronic form). Results Blood from 231 patients with sleeping sickness in central Uganda and from 91 patients with sleeping sickness in northwest Uganda and south Sudan were screened for T b rhodesiense (detection of SRA gene) and T b gambiense (detection of TgsGP gene). All samples from central Uganda were classified as T b rhodesiense, and all samples from northwest Uganda and south Sudan were identified as T b gambiense. Conclusions The two focuses of human African trypanosomiasis remain discrete, but the area of Uganda affected by the acute form of human sleeping sickness has increased 2.5-fold since 1985, spreading to three new districts within the past five years through movement of infected livestock. Without preventive action targeted at the livestock reservoir of this zoonotic disease, it is likely that the two disease focuses will converge. This will have a major impact on diagnosis and treatment of this neglected disease. Real time monitoring is recommended, using molecular diagnostic tools (at a regional surveillance centre, for example) targeted at both livestock and human patients
    corecore