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Abstract 16 

Coxiella burnetii is an obligate intracellular zoonotic bacterium that causes Q 17 

fever. Ruminants, including cattle, are broadly known to be reservoirs for this 18 

bacterium. Since 2006, many research groups have evaluated the herd-level 19 

prevalence of C. burnetii in cattle by molecular techniques on composite milk 20 

samples. This study explored the global C. burnetii herd-level prevalence from 21 

studies done on bovine bulk-tank milk (BTM) samples using PCR-based 22 

analysis. Also, moderators were investigated to identify sources of 23 

heterogeneity. Databases (CAB Abstracts, Medline via Ovid, PubMed, Web of 24 

Science and Google Scholar) were searched for index articles on C. burnetii 25 

prevalence in BTM samples by PCR published between January-1973 and 26 
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November-2018. Numerous studies (1,054) were initially identified, from which 27 

seventeen original publications were included in the meta-analysis based on the 28 

pre-defined selection criteria. These studies comprised 4,031 BTM samples 29 

from twelve countries. A random-effects model was used because of 30 

considerable heterogeneity (I2=98%) to estimate the herd-level prevalence of 31 

C. burnetii as 37.0%(CI95%25.2-49.5%). The average herd size appeared to 32 

account for a high level of the heterogeneity. No other moderators (geographic 33 

location, gross national income or notification criteria for Q fever) seemed to be 34 

determinant. This systematic evaluation demonstrated a high molecular 35 

prevalence of C. burnetii in BTM samples both in European and non-European 36 

countries, evidencing a widespread herd-level circulation of this agent in bovine 37 

dairy farms around the world. Meta-regression showed herd size as the most 38 

relevant moderator with the odds of a BTM sample testing positive doubling with 39 

every unit increase..  40 

Keywords  41 

Q fever; Coxiella burnetii; coxiellosis, meta-prevalence; PCR; IS1111 42 

1. Introduction 43 

Coxiella burnetii the intracellular Gram-negative bacterium responsible for the zoonotic 44 

disease Q fever [1] has many reservoirs, including ruminants, that represent the 45 

primary source of environmental contamination and of infection in people [2]. This 46 

agent causes fertility disorders and metritis in cattle and is implicated in bovine abortion 47 

[3,4,5]. It often leads to abortion in small ruminants when a pregnant dam is infected, 48 

as C. burnetii exhibits a specific tropism for the trophoblast cells in placental cotyledons 49 

[6]. 50 
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Coxiella burnetii has a complex epidemiological pattern and characteristics that make 51 

its control challenging. It is widely disseminated in nature and infects a large number of 52 

species, including mammals, birds, reptiles and fish [7]. There are two maintenance 53 

cycles in nature, one involving domestic species, and another including wild animal 54 

species and their ectoparasites. Ticks may be involved in the transmission of 55 

C. burnetii between wildlife and domestic species [8]. Additionally, the agent is 56 

extremely resistant remaining viable in the environment over extended periods [8]. 57 

Coxiella burnetii can also undergo air-borne transmission by contaminated dust 58 

particles, which can be facilitated by hot and dry weather conditions [9,10].  59 

A large human outbreak of Q fever reported in the Netherlands (2007-2010), 60 

comprising more than 4000 cases, emphasised the need for robust surveillance 61 

campaigns and highlighted its importance as a threat to public health [9,11]. 62 

Transmission to people is principally by the inhalation of aerosolised contaminated 63 

animal placenta and birth fluids during abortions or the birth of normal offspring [12]. 64 

Practices such as the assistance of calving, handling of birth products, and manure 65 

spreading may present a high risk for C. burnetii transmission to humans [13,14,15]. 66 

There is no consensus about the importance or effectiveness of the digestive route of 67 

infection by the consumption of raw milk and dairy product [6,16-18]. Nevertheless, 68 

respiratory exposure to aerosols produced during milking of animals should not be 69 

underestimated [19].  70 

The level of bacterial load by the different routes differs among ruminants [6]. While 71 

parturition products are the primary source of shedding in small ruminants, milk seems 72 

to play a central role as a shedding route of C. burnetii in dairy cattle [20,21]. Even 73 

asymptomatic animals [20] or seronegative cattle [22] have been identified as 74 

C. burnetii milk shedders. Coxiella burnetii can be excreted in milk for up-to 13 months 75 

[9,23], although this may be intermittent [6]. Two patterns of shedding have been 76 
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identified in dairy cows which can be persistent heavy shedders or sporadic shedders 77 

[20]. 78 

Based on these heterogeneous shedding patterns, composite samples such as bulk-79 

tank milk (BTM) constitute useful and easily accessible specimens for large scale 80 

epidemiological investigation. A positive result provides robust evidence for the 81 

identification of infected herds. Bulk-tank milk testing is the preferred diagnostic 82 

approach for disease notification in many countries [24] and has epidemiological value 83 

for the monitoring of infection status over time in follow-up evaluations [25].  84 

 85 

Recent large human Q fever outbreaks in the Netherlands, Spain, France and 86 

Germany have increasingly focussed attention on coxiellosis in many European 87 

countries where strategies including mandatory notification of the disease have been 88 

implemented. We systematically review studies of the herd prevalence of C. burnetii in 89 

dairy cattle using PCR on BTM samples, conduct a meta-analysis to determine the 90 

overall European and global prevalences and assess geographic region, average herd 91 

size, local legislation for coxiellosis and per capita income in each country where 92 

studies were conducted as potential moderators.  93 

 94 

2. Material and methods  95 

2.1 Literature search and study selection 96 

The systematic review and meta-analysis followed the Preferred Reporting Items for 97 

Systematic Reviews and Meta-Analyses (PRISMA) guidelines [26] (Figure 1). The 98 

search strategy identified publications reporting the prevalence of C. burnetii on BTM 99 

samples analysed by molecular studies. The following electronic databases were used 100 

to identify studies published from January 1973 up to November 2018 (week 43 of 101 

2018): CAB Abstracts, Medline, PubMed, Web of Science, Scopus, Science Direct and 102 
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Google Scholar. The literature search comprised the terms: “Coxiella burnetii” or “Q 103 

fever” or “coxiellosis” and “PCR” or “qPCR” or “real-time PCR” or “molecular diagnosis” 104 

and “BTM” or “milk”, with no language restriction. No constraint in study designs was 105 

applied at this phase. Additional publications were identified by cross checking 106 

references included in the articles. Duplicates were identified by reference 107 

management software (Mendeley) and manually removed.  108 

2.2 Eligibility- Inclusion criteria 109 

Publications on studies fulfilling all the following criteria were eligible for inclusion: (i) 110 

molecular investigation of C. burnetii by PCR, (ii) random sampling, (iii) composite 111 

single test-day samples obtained from the bulk storage tank located on a dairy cattle 112 

farm, (iv) primary studies, but not reviews, (v) cross-sectional studies reporting 113 

prevalence. Authors of articles not stating the total number of dairy cattle herds from 114 

which the sample was drawn were contacted to provide this missing data. Publications 115 

were examined by two independent reviewers (AR and MF) to ensure they matched 116 

the inclusion criteria. Discrepancies between the two reviewers on eligibility were 117 

discussed with the rest of authors until reaching agreement.  118 

2.3 Data extraction and Meta-analysis 119 

Studies were screened by title, and abstract and irrelevant publications were excluded. 120 

The remaining studies were full-text checked against the inclusion criteria described 121 

above. Articles that did not fulfil all these criteria were excluded. The number of 122 

publications excluded are shown in Figure 1. Data were systematically extracted from 123 

all the studies that satisfied the inclusion criteria, including: the first author identity, year 124 

of publication, study title, journal title, country, study methodology (duration of 125 

sampling, herd size, sample size, the number of positives herds and/or prevalence, 126 

randomisation), molecular technique and target gene used. When available, 127 
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information about the factors associated with the C. burnetii infection was also 128 

reported. 129 

The C. burnetii herd prevalence determined in BTM samples (dependant variable) was 130 

considered as the effect size for the studies included in the meta-analysis. This meta-131 

analysis of proportions was performed as outlined by Wang [27]. The heterogeneity 132 

among studies was first investigated by Cochran’s Q (X2) that tests the null hypothesis 133 

of homogeneity, and then quantified by the Higgins’ I2 statistic [28]. The heterogeneity 134 

was measured to select the model for the overall weighted C. burnetii herd prevalence 135 

estimation. As the level of heterogeneity was high, a random-effects model was first 136 

used to address both within-study variance (the sampling error) and the between-137 

studies variance (τ2). Possible sources of heterogeneity were investigated through the 138 

analysis of moderators. The evaluated moderators included: i) geographic region: 139 

Europe vs non-Europe; ii) average herd size; iii) local legislation for Q fever: mandatory 140 

notification vs non-mandatory notification [29-37], and iv) gross national income (GNI) 141 

per capita classification from the year the study was conducted, based on the Atlas 142 

method [38]. A subgroup analysis was performed for the categorical moderators. 143 

Categorical moderators were analysed using a mixed-effects model. The statistical 144 

significance of the moderators was evaluated by an omnibus test (QM) within the 145 

mixed-effects model [39]. The proportion of heterogeneity accounted for by each 146 

moderator was explored by the R2 index. Meta-regression was also utilised to explore 147 

heterogeneity among the studies. All the moderators and their interactions were 148 

entered in the initial model and non-significant terms were then dropped stepwise (from 149 

lowest R2 to highest R2) [40]. The odds ratio (OR) for loge average herd size was 150 

additionally investigated. Association among moderators was assessed by the Pearson 151 

correlation coefficient (r). Results from the meta‐analysis with the corresponding 95% 152 

confidence intervals were summarized using forest plots. Egger's test was used to test 153 

for the possibility of a publication bias for studies with low or high effect sizes [41]. All 154 
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the assessments were conducted using open RStudio software (Boston, MA) with 155 

metafor package, mvmeta package and metaprop commands [39,42].  156 

3. Results  157 

Description of the studies  158 

After removal of duplicates, a total of 179 studies were identified initially (Figure 1). 159 

Seventeen studies from twelve different countries (Belgium, Colombia, Hungary, Iran [2 160 

studies], Italy [3 studies], Latvia, Netherlands [2 studies], Portugal, Spain, South Korea, 161 

UK and USA [2 studies]) were eligible for the meta-analysis based on the inclusion 162 

criteria. Six of those studies were conducted in non-European countries and 11 in 163 

European countries; 10 were conducted in countries where Q fever is a notifiable 164 

disease, while 7 were from countries where it is not. The study conducted in the 165 

Basque Country was included in the subgroup with mandatory notification, although 166 

this is the only Spanish province where the notification for Q fever is compulsory. 167 

Finally, 3 studies were conducted in upper-middle-income countries and 14 studies 168 

were in high income countries. The seventeen selected articles are summarised in 169 

Table 1 and included test results for a total of 4,031 BTM samples collected over 9 170 

years (2006 to 2015). Studies employed either conventional PCR (n=5), quantitative 171 

PCR (n=9) or nested PCR (n=3). The transposon-like repetitive region of the bacterial 172 

genome (IS1111) was the gene most frequently used as the target in these PCRs 173 

(n=14), followed by com1 (n=2), icd (n=1) and 16S rRNA genes (n=1) (Table 1). 174 

 175 
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Table 1: Characteristics and main results of the eligible studies ordered by molecular prevalence of Coxiella burnetii in bulk-tank milk samples 

Author Year  Country Study area   

Average 

herd 
size 

Period of 
study  

Risk 

factor 
analysis 

Gross national 

income per 
capita [38]  

Is Q fever a 

mandatory 
notifiable disease?  

Molecular 
approach 

Target 
gene 

N herds 

in study 
area 

Percentage 

of herds 
sampled 

BTM(i) 

samples 
tested  

Positive 

BTM 
samples 

Prevalence 95% CI  

Boroduske et al. [43] 2017 Latvia Nationwide 8.6 2015 Yes High-income Yes qPCR IS1111 5,040 5 252 27 10.7 7.2 14.9 

Kargar et al. [23] 2013 Iran Johrom 3.7 - Yes 
Upper-middle-

income 
Yes nPCR com1 3,000 3.3 100 11 11 5.5 18.0 

Seo et al. [44] 2018 
South 
Korea 

Gyeongsang 74 2015 No High-income Yes nPCR 
16S 

rRNA 
869 69.9 607 108 17.8 14.8 20.9 

Rahimi et al. [45] 2010 Iran 
Chaharmahal 
and Bakhtiari 

48 2008 No 
Upper-middle-

income 
Yes nPCR com1 95 29.5 28 5 17.9 5.5 34.5 

van Engelen et al. [46] 2014 Netherlands Nationwide 71.7 2009-2011 Yes High-income Yes qPCR IS1111 20,746 1.5 309 58 18.8 14.6 23.3 

Anastácio et al. [47] 2016 Portugal Nationwide 21.7 2009-2013 Yes High-income No PCR IS1111 1,712 2.6 45 9 20 10.9 33.8 

Velasova et al. [48] 2017 UK Nationwide 133 2014-2015 No High-income No qPCR 
icd / 

IS1111 
10,491 2.1 220 57 25.9 20.3 31.9 

Czaplicki et al. [49] 2012 Belgium Wallonia 28.5 2006 Yes High-income No qPCR IS1111 5,086 1 50 15 30 8.7 51.3 

Magnino et al. [50] 2009 Italy 
Cremona, 

Montova and 

Pavia 

180 2007-2008 No High-income No PCR IS1111 3,550 11.2 400 161 40.2 35.5 45.1 

Valla et al. [51] 2014 Italy Nationwide 42.5 2011-2013 No High-income No PCR IS1111 30,000 1.1 344 138 40.1 35.0 45.4 

Contreras et al. [37] 2015 Colombia Monteria 150-600 2012 No 
Upper-middle-

income 
No PCR IS1111 3,341 0.3 11 5 45.5 16.7 75.8 

Astobiza et al. [52] 2012 Spain Bizkaia 46.1 2009-2010 No High-income No / Yes(ii) qPCR IS1111 178 100 178 92 51.7 44.4 59 

Muskens et al. [25] 2011 Netherlands Nationwide 65.7 2007 No High-income Yes qPCR IS1111 21,313 1.6 341 193 56.6 50.7 61.9 

Vicari et al. [34] 2013 Italy Lombardy 182 2011 No High-income No PCR IS1111 5,750 5 287 173 60.3 54.5 65.9 

Bauer et al. [53] 2015 USA Indiana 145.3 2011 No High-income Yes qPCR IS1111 1,225 25.8 316 193 61.1 55.6 66.4 

Gyuranecz et al. [54] 2012 Hungary Nationwide 14.5 2010-2011 No High-income Yes qPCR IS1111 17,172 0.1 15 10 66.7 40.5 88.7 

APHIS [55] 2007 USA 18 states(iii) 162.6 2007 No High-income Yes qPCR IS1111 54,100 1 528 406 76.9 73.2 80.4 

(i): BTM: bulk-tank milk samples, one per herd; PCR: conventional PCR; qPCR: real-time PCR; nPCR: nested PCR. (ii) mandatory notification in Basque Country. (iii) California, Idaho, Indiana, Iowa, 

Kentucky, Michigan, Minnesota, Missouri, New Mexico, New York, Ohio, Pennsylvania, Texas, Vermont, Virginia, Washington, Wisconsin. 

Table 1: Characteristics and main results of the eligible studies ordered by molecular prevalence of Coxiella burnetii in composite milk samples. 
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The estimated overall meta-prevalence of Coxiella burnetii in BTM samples 175 

The median size of the eligible studies was 252 BTM samples. Of the total 4,031 BTM 176 

samples, 1,661 were diagnosed positive by molecular techniques. The percentages of 177 

positive BTM samples among the studies ranged from 10.7 to 76.9%. The overall 178 

weighted prevalence of C. burnetii in the random-effects meta-analysis was estimated 179 

at 37.0% (CI95%25.2-49.5%). The I2 value of 98.0% (CI95%95.9–99.0) suggested high 180 

heterogeneity, with a τ2 of 0.0654 (CI95%0.3296-1.4997), and an X2 statistic of 892.97 181 

(P<0.0001). The overall meta-analysis is shown in a forest plot (Figure 2a). No obvious 182 

evidence of publication bias was detected in the meta-analysis on the basis of Egger’s 183 

test (P=0.599).  184 

 185 

The meta-prevalence of Coxiella burnetii and moderator analyses 186 

The weighted average prevalence was similar within each of the two geographic 187 

subgroups (36.9% in European countries and 37.1% in non-European countries; 188 

(I2=98%; X2=870.29, P<0.01; QM (df=1)=0.002, P=0.98), albeit with differing 95% 189 

confidence intervals of 22.8%– 52.2% in the former and 18.0%–58.5% in the latter 190 

group of countries (Figure 2b). Similarly, countries with mandatory and non-mandatory 191 

notification of Q fever had a prevalence around 37.0% (CI95%22.3–52.9% and 192 

CI95%19.4–56.4%, respectively; (I2=98%; X2=892.61, P<0.01; QM (df=1)=0.010, 193 

P=1.00) (Figure 2c). In the subgroup analysis based on the GNI per capita (Figure 2d), 194 

the prevalence was 40.1% (CI95%27.9–52.9%) in high-income countries and 21.2% 195 

(CI95%2.2–50.2%) in upper-middle-income countries (I2=98%; R2=3.10%; X2=844.20, 196 

P<0.01; QM (df=1)=1.39, P=0.24). None of the three factors above appeared to 197 

contribute meaningfully to the observed level of heterogeneity based on the subgroup 198 

analysis. The meta-regression revealed that average herd size accounted for a 199 

significant proportion of the heterogeneity (I2=97%; R2=33.01%; X2=552.23, P<0.01; 200 

QM =4.55, P=0.03). As a significant moderator, high-size herds presented a higher 201 
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herd-level C. burnetii BTM prevalence (Figure 3). The odds ratio for the loge of herd 202 

size was 2.00 (CI95%1.24-3.52; P=0.02). A strong positive correlation was found 203 

between countries being located in Europe and high GNI per capita income (r=0.633, 204 

P<0.05), but between location in Europe and compulsory disease notification (r=-0.239, 205 

P=0.24), and between high GNI per capita and notification (r=-0.076, P=0.82) 206 

correlations were weak and negative. Herd size was not meaningfully correlated with 207 

the origin of the studies (r=-0.468, P=0.12), notification (r=-0.428, P=0.16), or with GNI 208 

per capita (r=-0.444, P=0.14). 209 

 210 

4. Discussion  211 

Global serological or molecular prevalences from pathogens as diverse as Toxoplasma 212 

gondii and Helicobacter pylori have been estimated by meta-analyses following a 213 

systematic review of the published body of studies [56,57]. We conducted a 214 

comprehensive keyword‐based systematic review of the literature on the global 215 

molecular prevalence of C. burnetii in bovine BTM samples and data from those 216 

studies matching the inclusion criteria was extracted and included in a meta-analysis. 217 

For the purpose of this review, only adequately randomised studies with a cross-218 

sectional design were included.  219 

 220 

Heterogeneity among studies was first investigated by Higgins’ I2 statistic which 221 

indicates the proportion of heterogeneity not due to chance. A high level of 222 

heterogeneity (≥ 75%) indicates another source of variability besides the random 223 

error. The high I2 value (98%) led to the choice of a random-effects model for 224 

estimating the overall weighted C. burnetii herd-level prevalence among eligible 225 

articles, which makes no assumption that the prevalence is constant across the 226 

studies. The meta-analysis shows that C. burnetii is widely distributed in dairy farms 227 
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around twelve countries from 3 continents (America, Europe, and Asia). The best 228 

estimate of global C. burnetii herd-level prevalence, based on the studies matching the 229 

current inclusion criteria, was 37.0%. While there was no obvious evidence of 230 

publication bias based on Egger’s test, this test has limited power and the possibility of 231 

bias cannot be altogether excluded [58]. 232 

 233 

Bulk tank milk samples are a widely used approach for studying infectious diseases of 234 

dairy livestock at the population level, despite that dry cows and unhealthy animals are 235 

not included and hence BTM only provides a partial representation of the herd sanitary 236 

status. The analysis of BTM samples represents a suitable and convenient approach 237 

for the investigation of C. burnetii, not only for initial farm-level screening in situations 238 

where their disease status is unknown, but also for repeated analyses during 239 

monitoring programmes or after sanitary interventions such as antibiotic administration 240 

[59] or vaccination [60,61]. A positive BTM result confirms herd exposure to C. burnetii.  241 

 242 

The molecular diagnostic methods of studies included in this meta-analysis targeted 243 

different regions of the bacterial C. burnetii genome. The repetitive element 244 

IS1111 was selected in most of the published studies as this multiple copy gene is 245 

presumed to increase the sensitivity of the test [62]. Other studies used PCRs targeting 246 

com1, icd and 16S rRNA genes. The com1 element is frequently used for accurate 247 

quantification, as this is a single-copy gene [63]. Additionally, the analysis of 16S RNAs 248 

may reveal the prevalence of Coxiella as a genus, by the identification of both 249 

C. burnetii and Coxiella-like organisms [44]. 250 

 251 

The overall weighted C. burnetii prevalence found in bovine dairy herds was higher 252 

than the 5.1% to 22.1% range reported for BTM samples from sheep dairy flocks 253 

[47,64,65]. This difference could be explained by the primary route of bacterial 254 

transmission in each species. A higher C. burnetii prevalence might be expected in 255 



 

 12 

bovine milk, which is the predominant route of shedding for cows (and with a longer 256 

duration), whereas milk is less important for transmission from goats and sheep [9,23]. 257 

Two nationwide studies in Dutch dairy herds revealed markedly different prevalence 258 

levels in 2011 (56.6%) and 2014 (18.8%) [25,46], when using the same molecular 259 

approach in a similar number of herds. The lower prevalence in 2014 might be related 260 

to compulsory control measures applied in dairy goat farms after the large human Q 261 

fever outbreak in 2007-2010 [11,66]. There is some albeit limited evidence that the 262 

same outbreak strain may affect both cattle and goats in the Netherlands [67], and  263 

measures applied to goat farms might have indirectly helped to reduce prevalence in 264 

bovine herds. Similarly, three studies conducted in Italian herds in 2013 and 2014 also 265 

reported differences in C. burnetii prevalence. Valla et al. (2014) [51] revealed a 266 

nationwide prevalence of 40.0%, while Vicari et al. (2013) [34] found a higher 267 

prevalence of 60.0% in the northwest region of Lombardy, where almost half of Italian 268 

cows’ milk is produced [68]. The molecular prevalence of C. burnetii found in Lombardy 269 

represented a marked increase compared to a previous two-year study (2007-2008) 270 

conducted in the same region (40.0%) [50].  271 

 272 

Differences in the bacterial shedding patterns among ruminants and uncertainty about 273 

the importance of milk-borne infection may result in emphasis on different control 274 

measures depending on the species. In small ruminants, the identification of high-risk 275 

dams before parturition is important in avoiding zoonotic risk [69]. In cattle where milk 276 

is the primary shedding route, pre-partum monitoring may not be as appropriate [69]. 277 

Identification of chronic C. burnetii milk shedding cattle may be more effective in 278 

preventing environmental contamination, decreasing the risks of transmission among 279 

animals and preventing the spread of the bacterium.  280 

 281 

Only five of the seventeen selected articles included analysis of factors associated with 282 

C. burnetii infection. Herd size, cattle density and purchasing replacement animals from 283 
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external sources were all linked with C. burnetii infection [43,46]. Additionally, the 284 

presence of ticks on cattle was associated with BTM PCR positivity [46].  285 

 286 

For both cattle and small ruminants, a positive correlation between herd size and herd 287 

prevalence of C. burnetii has been reported [70,71]. The association between herd 288 

size, density of animals and an enhanced risk of C. burnetii infection has been well 289 

demonstrated [10,72]. Close contact between cows is an intrinsic characteristic of dairy 290 

herd management systems, and larger herds offer even greater chances for contact 291 

and transmission. Densely populated farms are prone to a higher risk of transmission 292 

of the pathogen within the herd after C. burnetii is introduced into the farm. Additionally, 293 

high animal density leads to greater bacterial load and thus higher environmental 294 

contamination [73], which may represent an increased risk of transmission to either 295 

cattle or people. This meta-analysis showed that elevated prevalence of C. burnetii is 296 

associated with large-sized herds, where the odds of a BTM sample testing positive 297 

double with every unit increase in loge herd size (odds ratio CI95%1.24-3.52). 298 

Accordingly, of the moderators analysed, average herd size had the largest effect, 299 

accounting 33.0% of the observed level of heterogeneity among studies.  300 

 301 

While Q fever has been studied in both European and non-European countries, these 302 

two contexts have not previously been contrasted. The overall prevalence of C. burnetii 303 

infection was remarkably similar in European and non-European studies (both 37%). 304 

The greater variability among non-European studies (CI95% 18.0%–58.5%) than among 305 

European studies (CI95% 22.8%–52.2%) could be accounted for by the differences in 306 

the numbers of studies and herds investigated. 307 

 308 

The mandatory notification of a disease should be helpful not only for early 309 

identification of outbreaks but also to enable evaluation of the effectiveness of control 310 

strategies. For instance, legislation implemented by the Dutch government in the face 311 
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of the largest Q fever outbreak ever recorded included compulsory notification of 312 

coxiellosis [66]. In the current meta-analysis, a remarkable similarity was noted 313 

between overall weighted prevalence of C. burnetii in BTM samples from countries with 314 

mandatory (37.0%, CI95%22.3–52.9%) and non-mandatory (36.9%, CI95%19.4–56.4%) 315 

notification legislation.  316 

 317 

In our meta-analysis, the GNI per capita seems to have a minor effect as a moderator 318 

of the prevalence of C. burnetii in BTM samples. When the studies were stratified 319 

according to this indicator of economic development, high-income countries had twice 320 

the overall weighted prevalence of upper-middle income countries, albeit that this 321 

difference was not statistically significant (P=0.24). All publications matching the 322 

inclusion criteria were conducted in high and upper-middle income countries. None of 323 

the studies conducted in low-middle and low-income countries that were identified in 324 

the initial search fulfilled the inclusion criteria and were rejected from the meta-analysis. 325 

For instance, an ineligible study carried out in Egypt reported a 22% molecular 326 

prevalence of C. burnetii in individual milk samples [74] and one carried out in 327 

Bangladesh reported 15.6% seroprevalence in herd milk specimens [75]. These 328 

findings suggest that further field studies could prove rewarding. The overall 329 

prevalence in low-middle and low-income countries remains unknown. There is 330 

evidence of extensive ruminant infection with C. burnetii throughout African countries 331 

where the threat of human exposure and significant economic impact are possibly 332 

underestimated [76].  333 

 334 

Some heterogeneity might have resulted from methodological variation among nine of 335 

the 17 studies that used qPCR to detect the IS1111 target. Four of these [25,46,49,52] 336 

used the TaqVet Coxiella burnetii LSI kit and followed the same manufacturer’s 337 

instructions for the amplification reaction and for the interpretation of the results. These 338 

four studies considered samples as positive with a cycle threshold (Ct) < 40. Two 339 
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further studies used threshold Ct values of 36.5 [53] and 36.95 [54], while the 340 

remaining three studies using qPCR to detect IS1111 did not report threshold Ct 341 

values.  342 

 343 

Moreover, whereas the IS1111 transposon-like element is a multi-copy gene [77], the 344 

16S rRNA target used in South Korean study [44] and the com1 target used in the two 345 

studies in Iran [23,45] are both single copy genes. The assays used in these studies 346 

might have had lower sensitivity and indeed, the studies using the single copy assays 347 

had three of the four lowest prevalence values. All three of these studies were in non-348 

European countries where the disease is notifiable, and the two Iranian studies were in 349 

an upper-middle income country, which may have introduced a degree of bias in the 350 

analysis. 351 

Although the moderator analysis identified average herd size as one source, most of 352 

the heterogeneity remained unexplained (residual heterogeneity I²=97.0%; P<0.01). It 353 

is quite possible that other factors, not currently addressed, influence the C. burnetii 354 

herd-level prevalence. Unsurprisingly, two of the moderators were highly correlated; 355 

studies in European and in high-income countries showed a significant and positive 356 

correlation (r=0.627, P<0.01). Awareness of the relationships between moderators that 357 

may potentially induce bias in the analysis should be considered when drawing 358 

conclusions [78].  359 

5. Conclusion 360 

This meta-analysis reports a high overall global prevalence of C. burnetii in BTM 361 

samples of 37.0% (CI95%25.2-49.5%), showing widespread herd-level circulation of this 362 

agent in bovine dairy farms. These results should be of interest not only for European 363 

countries where C. burnetii is a well-known health threat, but also in countries where 364 

epidemiological investigations have been limited, its importance as a zoonosis may be 365 

underestimated and prevention strategies may need to be implemented. Information on 366 
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local biosecurity practices and environmental conditions would be valuable for a full 367 

understanding of C. burnetii prevalence globally, but such descriptions were lacking in 368 

most of the publications considered in the meta-analysis. While this study has shown 369 

the global herd prevalence of C. burnetii in dairy cattle to be high, in many countries, 370 

including high-income countries such as Belgium, Italy, Portugal and UK, the disease is 371 

not currently notifiable, and control is not mandatory. To make it so might represent an 372 

additional burden on dairy farmers and would require justification on economic or public 373 

health grounds for which further study might be required. The high herd-level 374 

circulation of C. burnetii in bovine dairy farms in several countries showed by this study 375 

reinforces the need for further investigations on this globally important zoonosis.  376 
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Figure 3 
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Figure Captions 

Figure 1: PRISMA flow diagram for the systematic review describing the study design 

process. Articles reporting the herd-level Coxiella burnetii prevalence based on bulk-

tank milk samples by molecular investigation were systematically reviewed and further 

evaluated by a meta-analysis. 

 

Figure 2: Forest plot for the meta-analysis of herd-level Coxiella burnetii prevalence 

based on bulk-tank milk samples from the seventeen studies that matched the 

inclusion criteria in the systematic review. (a) All studies. (b) European and non-

European country subgroups. (c) Grouped by mandatory and non-mandatory 

notification. (d) Grouped by the per capita Gross National Income (GNI) level. 

 

Figure 3: Bubble plot for meta-regression of herd-level Coxiella burnetii prevalence 

based on bulk-tank milk with average herd size as continuous covariate. Points 

represent the seventeen studies that matched the inclusion criteria in the systematic 

review. Bubble size is in relation to the weight of each primary study. 
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