50 research outputs found

    Promoting Gender Equity Lessons from the Ford Foundation International Fellowships Program

    Get PDF
    Despite the growing focus on gender parity in higher education and the fact that in many wealthy nations women outpace men in tertiary enrollments, statistics show that in parts of the developing world, women are still underrepresented. In South and West Asia, for example, only 74 women are enrolled in higher education for every 100 men, whereas in sub-Saharan Africa, there are only 62 women enrolled for every 100 men (UNESCO, 2010).Even in countries where they have achieved parity, women face other issues of inequity and marginalization, from domestic violence to a lack of female leadership in government. While there are no simple solutions for these complex and wide-ranging problems, promoting advanced education for women—particularly those that are devoted to ameliorating such issues at the grassroots level—is a crucial step. Not only does it build the skills and capacities of those working to promote gender equity, it increases their chances of advancing to positions of power from which they can affect change.As part of its mission to provide higher education access to marginalized communities, the Ford Foundation International Fellowships Program (IFP) sought to address gender inequality by providing graduate fellowships to nearly 2,150 women—50% of the IFP fellow population—from 22 countries in the developing world. This brief explores how international fellowship programs like IFP can advance educational, social, and economic equity for women. In addition to discussing the approach the program took in providing educational access and opportunity to women, the brief looks at two stories of alumnae who have not only benefitted from the fellowship themselves, but who are working to advance gender equity in their home communities and countries.Activists, advocates, and practitioners can draw upon the strategies and stories that follow to better understand the meaning of gender equity and advance their own efforts to achieve social justice for women and girls worldwide

    Gauss–Lobatto to Bernstein polynomials transformation

    Get PDF
    AbstractThe aim of this paper is to transform a polynomial expressed as a weighted sum of discrete orthogonal polynomials on Gauss–Lobatto nodes into Bernstein form and vice versa. Explicit formulas and recursion expressions are derived. Moreover, an efficient algorithm for the transformation from Gauss–Lobatto to Bernstein is proposed. Finally, in order to show the robustness of the proposed algorithm, experimental results are reported

    A property of the elementary symmetric functions”,

    Get PDF
    Abstract In this paper, a relation between the elementary symmetric functions on the frequencies of multi-sine wave signal and its multiple integrals is proposed. In particular, such relation is useful to obtain a closed-form expression for the frequencies estimation. The approach used herein is based on the algebraic derivative method in the frequency domain, which allows to yield exact formula in terms of multiple integrals of the signal when placed in the time domain. Moreover, it allows to free oneself from the hypothesis of uniform sampling. Two different ways to approach the estimation are advised, the first is based on least-squares estimation, while the second one is based on the solution of a linear system of dimension equal to the number of sinusoidal components involved. For an easy time realization of such formula, a time-varying filter is proposed. Due to use of multiple integrals of the signal, the resulting parameters estimation is accurate in the face of large measurement noise. To corroborate the theoretical analysis and to investigate the performance of the developed algorithm, computer simulated and laboratory experiments data records are processed

    Generalized Transformation for Decorated Spin Models

    Full text link
    The paper discusses the transformation of decorated Ising models into an effective \textit{undecorated} spin models, using the most general Hamiltonian for interacting Ising models including a long range and high order interactions. The inverse of a Vandermonde matrix with equidistant nodes [−s,s][-s,s] is used to obtain an analytical expression of the transformation. This kind of transformation is very useful to obtain the partition function of decorated systems. The method presented by Fisher is also extended, in order to obtain the correlation functions of the decorated Ising models transforming into an effective undecorated Ising models. We apply this transformation to a particular mixed spin-(1/2,1) and (1/2,2) square lattice with only nearest site interaction. This model could be transformed into an effective uniform spin-SS square lattice with nearest and next-nearest interaction, furthermore the effective Hamiltonian also include combinations of three-body and four-body interactions, particularly we considered spin 1 and 2.Comment: 16 pages, 4 figure

    Approximation error of the Lagrange reconstructing polynomial

    Get PDF
    The reconstruction approach [Shu C.W.: {\em SIAM Rev.} {\bf 51} (2009) 82--126] for the numerical approximation of fâ€Č(x)f'(x) is based on the construction of a dual function h(x)h(x) whose sliding averages over the interval [x−12Δx,x+12Δx][x-\tfrac{1}{2}\Delta x,x+\tfrac{1}{2}\Delta x] are equal to f(x)f(x) (assuming an homogeneous grid of cell-size Δx\Delta x). We study the deconvolution problem [Harten A., Engquist B., Osher S., Chakravarthy S.R.: {\em J. Comp. Phys.} {\bf 71} (1987) 231--303] which relates the Taylor polynomials of h(x)h(x) and f(x)f(x), and obtain its explicit solution, by introducing rational numbers τn\tau_n defined by a recurrence relation, or determined by their generating function, gτ(x)g_\tau(x), related with the reconstruction pair of ex{\rm e}^x. We then apply these results to the specific case of Lagrange-interpolation-based polynomial reconstruction, and determine explicitly the approximation error of the Lagrange reconstructing polynomial (whose sliding averages are equal to the Lagrange interpolating polynomial) on an arbitrary stencil defined on a homogeneous grid.Comment: 31 pages, 1 table; revised version to appear in J. Approx. Theor

    On numerical aspects of pseudo-complex powers in R^3

    Get PDF
    In this paper we consider a particularly important case of 3D monogenic polynomials that are isomorphic to the integer powers of one complex variable (called pseudo-complex powers or pseudo-complex polynomials, PCP). The construction of bases for spaces of monogenic polynomials in the framework of Clifford Analysis has been discussed by several authors and from different points of view. Here our main concern are numerical aspects of the implementation of PCP as bases of monogenic polynomials of homogeneous degree k. The representation of the well known Fueter polynomial basis by a particular PCP-basis is subject to a detailed analysis for showing the numerical effciency of the use of PCP. In this context a modiffcation of the Eisinberg-Fedele algorithm for inverting a Vandermonde matrix is presented.This work was supported by Portuguese funds through the CIDMA - Center for Research and Development in Mathematics and Applications, the Research Centre of Mathematics of the University of Minho and the Portuguese Foundation for Science and Technology ("FCT - Fundacao para a Ciencia e a Tecnologia"), within projects PEst-OE/MAT/UI4106/2014 and PEstOE/MAT/UI0013/2014

    Bifurcation Boundary Conditions for Switching DC-DC Converters Under Constant On-Time Control

    Full text link
    Sampled-data analysis and harmonic balance analysis are applied to analyze switching DC-DC converters under constant on-time control. Design-oriented boundary conditions for the period-doubling bifurcation and the saddle-node bifurcation are derived. The required ramp slope to avoid the bifurcations and the assigned pole locations associated with the ramp are also derived. The derived boundary conditions are more general and accurate than those recently obtained. Those recently obtained boundary conditions become special cases under the general modeling approach presented in this paper. Different analyses give different perspectives on the system dynamics and complement each other. Under the sampled-data analysis, the boundary conditions are expressed in terms of signal slopes and the ramp slope. Under the harmonic balance analysis, the boundary conditions are expressed in terms of signal harmonics. The derived boundary conditions are useful for a designer to design a converter to avoid the occurrence of the period-doubling bifurcation and the saddle-node bifurcation.Comment: Submitted to International Journal of Circuit Theory and Applications on August 10, 2011; Manuscript ID: CTA-11-016

    Equivalence between non-bilinear spin-SS Ising model and Wajnflasz model

    Full text link
    We propose the mapping of polynomial of degree 2S constructed as a linear combination of powers of spin-SS (for simplicity, we called as spin-SS polynomial) onto spin-crossover state. The spin-SS polynomial in general can be projected onto non-symmetric degenerated spin up (high-spin) and spin down (low-spin) momenta. The total number of mapping for each general spin-SS is given by 2(22S−1)2(2^{2S}-1). As an application of this mapping, we consider a general non-bilinear spin-SS Ising model which can be transformed onto spin-crossover described by Wajnflasz model. Using a further transformation we obtain the partition function of the effective spin-1/2 Ising model, making a suitable mapping the non-symmetric contribution leads us to a spin-1/2 Ising model with a fixed external magnetic field, which in general cannot be solved exactly. However, for a particular case of non-bilinear spin-SS Ising model could become equivalent to an exactly solvable Ising model. The transformed Ising model exhibits a residual entropy, then it should be understood also as a frustrated spin model, due to competing parameters coupling of the non-bilinear spin-SS Ising model
    corecore