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Abstract

The aim of this paper is to transform a polynomial expressed as a weighted sum of discrete orthogonal polynomials on
Gauss–Lobatto nodes into Bernstein form and vice versa. Explicit formulas and recursion expressions are derived. Moreover,
an efficient algorithm for the transformation from Gauss–Lobatto to Bernstein is proposed. Finally, in order to show the robustness
of the proposed algorithm, experimental results are reported.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Frequently, in many application fields it is necessary to model an unknown function f (t), only available on a finite
grid G = {xi }

n
i=1 of distinct points, by a linear combination of basis functions

{
φ j (t)

}m
j=1:

p(t) =
m∑

j=1

c jφ j (t). (1)

In many practical situations, the measurements of f (t) should be affected by noise. In these cases a high degree of
p(t) is not convenient, then m � n is chosen. It is well known that this choice effectively reduces the influence of the
random errors in measurements [1], but requires an appropriate selection of m and n. For example, a large value of n
guarantees that, over the grid of measurement points, the variance of the smoothed function values is γ 2m/n, where
γ 2 I is the covariance matrix of the estimated c∗j [1]. The case of m = n corresponds to the “interpolation problem”
in which it is required that a (n − 1) degree polynomial satisfies

p(xi ) =

n∑
j=1

c jφ(x j ) = f (xi ), i = 1, 2, . . . , n. (2)
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Usually, discrete orthogonal polynomials are used to find coefficients c j in the least-squares sense, since they are easy
to manipulate, have good convergence properties, and give a well-conditioned representation of a function, [1]. Every
type of polynomial basis, such as the power, Bernstein, Jacobi, Hermite, Legendre, has its strength and advantages and
sometimes it has some disadvantages; by the appropriate choice of the basis many problems can be solved and many
difficulties can be removed. The choice of the basis to be used depends on the problem to be solved. The polynomials
determined in the Bernstein basis enjoy considerable popularity in many different applications. For example in
computer-aided design (CAD) applications [2,3], in finding the roots of a transcendental function f (x) on an interval
[a, b] [4], in the approximation theory of functions defined over finite domains, in finding solutions of systems of
polynomial equations [5], in many interesting control system designs, analysis problems and in robust analysis of
linear dynamic systems [6–10]. Since Bernstein polynomials are not orthogonal, they are not convenient to use in the
least-squares approximation. For that reason, it could be interesting to combine the superior performance of the least-
squares of some orthogonal polynomials with the geometrical insight of the Bernstein polynomial basis. With this aim,
many authors have proposed different papers in relation to the transformation of one basis into Bernstein polynomial
basis, [11–14]. Nevertheless, it is well known that mapping from one basis to another and vice versa, is usually an
ill-conditioned problem, therefore there is a growing interest in finding explicit formulas for such transformations
and developing numerically robust and stable algorithms. We would like to stress that it is not possible to derive
a closed form for the transformation matrix from Legendre to Bernstein [11], from Chebyshev to Bernstein [12],
and from Jacobi to Bernstein [13]. In fact, the expression of the entries of the transformation matrices involves a
summation that has a closure in terms of Hypergeometric functions, [15], not easy to manage. Vice versa for the
orthogonal polynomials on Gauss–Lobatto nodes, [16–18], explicit transformation formulas, expressed as the product
of matrices whose entries are characterized by closed expressions, will be presented. In this paper, transformation
matrices, mapping the Gauss–Lobatto and Bernstein forms of a degree (m − 1) polynomial into each other, are
derived and examined. The choice of the Gauss–Lobatto nodes is due to the high use in numerical applications such
as in polynomial interpolation [17], approximation theory [16,18], spectral methods [19,20], method for estimating
the length of a parametric curve using only samples of points [21], method for estimating surface area [22], quadrature
formulas, etc. Their nonuniform distribution (with highest density towards the end-points) gives the least-interpolation
error in the L2-norm. Considering the high use of the Gauss–Lobatto nodes it is seemed natural to work on the discrete
orthogonal polynomials defined on such nodes proposed in [16]. Another good reason to use them is that the condition
number of this transformation grows at a significantly slower rate than the Chebyshev–Bernstein conversion basis, as
it will be showed in what follows. The rest of this paper is organized as follows: in Section 2 a brief review on
the Bernstein polynomials is reported; in Section 3 the discrete orthogonal polynomials on Gauss–Lobatto nodes
are introduced; in Section 4 the main results are summarized and an algorithm for an efficient forward mapping is
proposed; numerical tests and comparison are shown in Section 5; summary and conclusions are reported in Section 6;
finally, an Appendix section contains the proofs of some results.

2. Bernstein polynomials

In this section some definitions and formulas for Bernstein polynomials are summarized. For every natural number
m, the Bernstein polynomials of degree (m − 1) on [0, 1] are defined by

Bm
k (x) =

(
m − 1
k − 1

)
xk−1(1− x)m−k, k = 1, . . . ,m. (3)

Let MB be the coefficient matrix of polynomials Bm
k (x), k = 1, . . . ,m, where MB(i, j) is the coefficient of the

polynomial Bm
i (x) with respect to the monomial x j−1, then by Eq. (3) it is possible to obtain1

MB(i, j) = (−1)i+ j
(

m − 1
i − 1

)(
m − i

j − i

)
, i = 1, . . . ,m, j = i, . . . ,m. (4)

1 For the sake of brevity in the notation, the non-specified entries in a matrix will be assumed to be zero.
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By the transformation of a polynomial from its power form into its Bernstein form [7], results that :
xk
=

m∑
i=k

(
i−1

k

)
(

m−1
k

) Bm
i (x), k = 1, . . . ,m − 1,

1 =
m∑

i=1

Bm
i (x)

(5)

then the generic entry of the inverse of MB is

M−1
B (i, j) =

(
j−1
i−1

)
(

m−1
i−1

) , i = 1, . . . ,m, j = i, . . . ,m. (6)

3. Gauss–Lobatto polynomials

Gauss–Lobatto polynomials [16] are discrete orthogonal polynomials over the so-called Gauss–Lobatto–Chebyshev
points [17]:

xk = − cos
(

k − 1
n − 1

π

)
, k = 1, 2, . . . , n, (7)

with respect to the inner product

〈 f, g〉 =
n∑

k=1

f (xk)g(xk). (8)

The generic Gauss–Lobatto polynomial P(n, k, x) of degree (k − 1) on the interval [−1, 1] has the following explicit
expression

P(n, k, x) = (n + k − 3)xk−1
+

b
k−1

2 c∑
q=1

(−1)q
1

q22q

(
k − q − 2

q − 1

)
× [(k − 1)n + (k − 1)(k − 3)+ 2q] xk−2q−1. (9)

And thus the first three polynomials are given by

P(n, 1, x) = n − 2,

P(n, 2, x) = (n − 1)x,

P(n, 3, x) = nx2
−

n + 1
2

.

(10)

Gauss–Lobatto polynomials also satisfy the orthogonality conditions

〈P(n, 1, x), P(n, 1, x)〉 = n(n − 2)2,

〈P(n, k, x), P(n, k, x)〉 =
(n − 1)(n + k − 1)(n + k − 3)

22k−3 , k = 2, 3, . . . , n − 1,

〈P(n, n, x), P(n, n, x)〉 =
(n − 1)2(2n − 3)

22n−5 ,

(11)

and the three-terms relation

P(n, k, x) = αk x P(n, k − 1, x)+ γk P(n, k − 2, x), k = 4, 5, . . . , n, (12)
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where

αk =
n + k − 3
n + k − 4

, k = 4, 5, . . . , n,

γk = −
n + k − 2

4(n + k − 4)
, k = 4, 5, . . . , n.

(13)

Let C [−1,1]
P be the coefficient matrix of polynomials P(n, i, x), i = 1, . . . ,m with m ≤ n, where C [−1,1]

P (i, j) is the
coefficient of the polynomial P(n, i, x) with respect to the monomial x j−1, then by Eq. (9) it follows that

C [−1,1]
P (2i, 2 j) =

(−1)i+ j

(i − j)22i−2 j

(
i + j − 2
i − j − 1

)
× [(2i − 1)n + (2i − 1)(2i − 3)+ 2(i − j)] , i = 1, . . . ,

⌊m

2

⌋
, j = 1, . . . , i − 1,

C [−1,1]
P (2i − 1, 2 j − 1) =

(−1)i+ j

(i − j)22i−2 j

(
i + j − 3
i − j − 1

)
× [(2i − 2)n + (2i − 2)(2i − 4)+ 2(i − j)] , i = 1, . . . ,

⌈m

2

⌉
, j = 1, . . . , i − 1,

C [−1,1]
P (i, i) = n + i − 3, i = 1, . . . ,m.

(14)

Proposition 1. The matrix C [−1,1]
P can be factorized as the product of two matrices C1 and C2 where

C1(2i, 2i) = n + 2i − 3, i = 1, . . . ,
⌊m

2

⌋
,

C1(2i − 1, 2i − 1) = n + 2i − 4, i = 1, . . . ,
⌈m

2

⌉
,

C1(2i, 2 j) = −
1

22i−2 j−1 , i = 2, . . . ,
⌊m

2

⌋
, j = 1, . . . , i − 1,

C1(2i − 1, 2 j − 1) = −
1

22i−2 j−1 , i = 2, . . . ,
⌈m

2

⌉
, j = 1, . . . , i − 1

(15)

and 

C2(1, 1) = 1,

C2(2i, 2 j) = (−1)i+ j (2i − 1)

22i−2 j (2 j − 1)

(
i + j − 2

i − j

)
, i = 1, . . . ,

⌊m

2

⌋
, j = 1, . . . , i,

C2(2i − 1, 1) = (−1)i+1 1

22i−3 , i = 2, . . . ,
⌈m

2

⌉
C2(2i − 1, 2 j − 1) = (−1)i+ j (2i − 2)

22i−2 j (2 j − 2)

(
i + j − 3

i − j

)
, i = 2, . . . ,

⌈m

2

⌉
, j = 2, . . . , i.

(16)

Proof. For the sake of brevity, we will consider the proof only for the elements in even positions. Let Γ be the product
of C1 and C2, then Γ (2i, 2 j) can be expressed as

Γ (2i, 2 j) =
i∑

k=1

C1(2i, 2k)C2(2k, 2 j)

=

i−1∑
k=1

C1(2i, 2k)C2(2k, 2 j)+ C1(2i, 2i)C2(2i, 2 j). (17)

We will show that Eq. (17) reduces to the first expression in Eq. (14). By considering the explicit expressions of
C1(2i, 2k) and C2(2k, 2 j) involved in Eq. (17) and using standard arguments it follows that
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Γ (2i, 2 j) =
(−1) j

22i−2 j (2 j − 1)

×

[
(−1)i (n + 2i − 3)(2i − 1)

(
i + j − 2

i − j

)
− 2

i−1∑
k=1

(−1)k(2k − 1)
(

k − j − 2
k − j

)]
. (18)

The summation involved in Eq. (18) has an explicit closure, according to Lemma 1 (see Appendix A), then Eq. (18)
becomes

Γ (2i, 2 j) =
(−1)i+ j

22i−2 j

[
(2i − 1)(n + 2i − 3)

2 j − 1

(
i + j − 2

i − j

)
+ 2

(
i + j − 2

2 j − 1

)]
. (19)

Finally, by rearranging Eq. (19), it is effortless to obtain Γ (2i, 2 j) = C [−1,1]
P (2i, 2 j). The same approach can be used

for the proof of elements in odd positions. �

The explicit expressions of the entries of C−1
1 and C−1

2 are also available (see Proposition 3 in Appendix A).
Another result, which will be useful in the following, is the matrix transformation, namely T , that maps the

Gauss–Lobatto polynomials from the interval [−1, 1] in [0, 1].

Proposition 2. Let C [0,1]P be the coefficient matrix of polynomials P(n, i, 2x − 1), i = 1, 2, . . . ,m, then

C [0,1]P = C [−1,1]
P T, (20)

where

T (i, j) = (−1)i+ j 2 j−1
(

i − 1
i − j

)
, i = 1, . . . ,m, j = 1, . . . , i. (21)

Proof. Let us consider, for brevity, the polynomials P(n, 2k, 2x − 1), k = 1, . . . ,
⌊m

2

⌋
of degree (2k− 1). Since that

polynomials are obtained from the Gauss–Lobatto polynomials shifted on the interval [0, 1], obviously they can be
written in terms of the elements of the matrix C [−1,1]

P as:

P(n, 2k, 2x − 1) =
k∑

q=1

C [−1,1]
P (2k, 2q)(2x − 1)2q−1. (22)

Expanding the term (2x − 1)2q−1 by using the binomial theorem [23]

(2x − 1)2q−1
=

2q∑
s=1

(−1)s2s−1
(

2q − 1
s − 1

)
x s−1, (23)

the polynomial P(n, 2k, 2x − 1) can be expressed as:

P(n, 2k, 2x − 1) =
k∑

q=1

2q∑
s=1

(−1)s2s−1
(

2q − 1
s − 1

)
C [−1,1]

P (2k, 2q)x s−1. (24)

Observing Eqs. (21) and (24), it is evident that the coefficient of the polynomial P(n, 2k, 2x − 1) with respect to the
monomial x s−1, namely C [0,1]P (2k, s), can be rewritten as:

C [0,1]P (2k, s) =
k∑

q=1

C [−1,1]
P (2k, 2q)T (2q, s). � (25)

Remark 1. By using the properties of binomial coefficients [23], the inverse of T is

T−1(i, j) =

(
i−1
j−1

)
2i−1 , i = 1, . . . ,m, j = 1, . . . , i. (26)
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Since P(n, k, x), k = 1, . . . ,m is a set of orthogonal polynomials over the set of nodes (7), under an affine
transformation x → 2x − 1 they remain orthogonal over the new set of nodes x̂k =

xk+1
2 , k = 1, . . . , n. Under such

transformation the first three polynomials become

P(n, 1, 2x − 1) = n − 2,

P(n, 2, 2x − 1) = 2(n − 1)x − (n − 1),

P(n, 3, 2x − 1) = 4nx2
− 4nx +

n − 1
2

,

(27)

and they satisfy the three-terms recurrence relation

P(n, k, 2x − 1) = αk(2x − 1)P(n, k − 1, 2x − 1)+ γk P(n, k − 2, 2x − 1), k = 4, 5, . . . , n. (28)

For details on the Gauss–Lobatto polynomials and accurate algorithms for the least-square problem on the
Gauss–Lobatto nodes we refer the reader to [16,18].

4. Main results

Our aim is to transform a polynomial expressed as a weighted sum of discrete orthogonal polynomials on the
Gauss–Lobatto nodes into Bernstein form and vice versa:

m∑
k=1

gk P(n, k, 2x − 1) =
m∑

k=1

bk Bm
k (x). (29)

The following Theorem gives a factorized form of the transformation matrices TGL→B from the Gauss–Lobatto
polynomials P(n, k, 2x − 1), k = 1, . . . ,m into Bernstein polynomial basis and its inverse, TB→GL .

Theorem 1.

TGL→B = C1C2T M−1
B , (30)

TB→GL = MB T−1C−1
2 C−1

1 . (31)

Proof. By using the formula (5), it is straightforward to express the i th Gauss–Lobatto polynomial P(n, i, 2x − 1) in
Bernstein basis form Bm

q (x), q = 1, 2, . . . ,m as

P(n, i, 2x − 1) =
m∑

q=1

ρi,q Bm
q (x), i = 1, 2, . . . ,m, (32)

where

ρi,q =

m∑
j=1

vi ( j)M−1
B ( j, q) (33)

and

vi ( j) = C [0,1]P (i, j), j = 1, . . . ,m. (34)

Taking into account Propositions 1 and 2, Eqs. (30) and (31) follow. �

Since the problem of mapping from one basis to another is ill-conditioned, an effort to develop numerically robust
and stable algorithm, was done looking for: explicit formulas, recursion expressions for a simple construction of the
matrices involved in the transformation operations and cunning solutions to avoid severe numerical errors. In what
follows an algorithm for an efficient mapping is proposed, but first of all some properties on the involved matrices in
such mapping are reported.

Observing Eq. (30), the only involved matrices are C [0,1]P and M−1
B . The matrix C [0,1]P can be decomposed as

C [0,1]P = nG1 + G2, (35)
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where

G1 = C2T,

G2 = C1|n=0C2T .
(36)

The matrices G1 and G2 can be effectively constructed by using the three-terms recurrence relations satisfied by the
Gauss–Lobatto polynomials. The first four rows of G1 are set by inspection as

G1(1, 1) = 1,
G1(2, 1) = −1, G1(2, 2) = 2,

G1(3, 1) =
1
2
, G1(3, 2) = −4, G1(3, 3) = 4,

G1(4, 1) = −
1
4
, G1(4, 2) =

9
2
, G1(4, 3) = −12, G1(4, 4) = 8,

(37)

and 

G1(i, 1) = −
1
4

G1(i − 2, 1)− G1(i − 1, 1), i = 5, . . . ,m,

G1(i, i) = 2G1(i − 1, i − 1), i = 5, . . . ,m,

G1(i, j) = 2G1(i − 1, j − 1)− G1(i − 1, j)−
1
4

G1(i − 2, j), i = 5, . . . ,m,

j = 2, . . . , i − 1.

(38)

Following the same line for the construction of the matrix G1, G2 can be obtained by

G2(1, 1) = −2,

G2(2, 1) = 1, G2(2, 2) = −2,

G2(3, 1) = −
1
2
,

G2(4, 1) =
1
4
, G2(4, 2) =

7
2
, G2(4, 3) = −12, G2(4, 4) = 8,

(39)

and 

G2(i, 1) = −
i − 2

4(i − 4)
G2(i − 2, 1)−

i − 3
i − 4

G2(i − 1, 1), i = 5, . . . ,m,

G2(i, i) =
2(i − 3)

i − 4
G2(i − 1, i − 1), i = 5, . . . ,m,

G2(i, j) =
i − 3
i − 4

(2G2(i − 1, j − 1)− G2(i − 1, j))−
i − 2

4(i − 4)
G2(i − 2, j), i = 5, . . . ,m,

j = 2, . . . , i − 1.

(40)

The matrices G1 and G2, can be made integer through pre-multiplication by the diagonal matrix D1 defined as:{
D1(1, 1) = 1, D1(2, 2) = 1,
D1(i, i) = 2i−2, i = 3, . . . ,m.

(41)

Moreover, the matrix M−1
B can be factorized as the product of an integer matrix MB1 , and a diagonal matrix MB2 ,

MB1(i, j) =

(
m − i

j − i

)
, i = 1, . . . ,m, j = i, . . . ,m, (42)

MB2(i, j) =
1(

m−1
i−1

)δi, j , i, j = 1, . . . ,m, (43)
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Table 1
Maximum and mean value of ε, 100 000 experiments, n = 10 000, g ∈ [−1, 1]

m T̄GL→B TGL→B
εmax εmean εmax εmean

20 3.46−10 1.29−14 4.35−04 1.20−07
19 4.20−10 1.14−14 2.97−03 8.94−08
18 2.51−11 7.71−15 2.33−04 1.72−08
17 1.22−10 1.00−14 2.59−04 9.43−09
16 8.14−11 9.91−15 2.70−04 5.11−09
15 2.92−11 6.51−15 5.73−05 1.24−09
14 6.17−09 6.92−14 2.93−06 2.47−10
13 4.61−11 6.03−15 8.39−07 8.79−11
12 7.46−11 7.72−15 5.59−07 3.63−11
11 1.25−10 6.24−15 8.91−08 1.08−11
10 5.10−11 5.13−15 7.02−08 5.60−12

where

δi, j =

{
1, i = j,
0, otherwise.

Note that MB2 can be made integer multiplying by (m − 1)!. Let M̂B2 be the matrix defined as

M̂B2 = (m − 1)!MB2 . (44)

On the base of the previous observations, Eq. (30) assumes the form

T̄GL→B =
1

(m − 1)!
D−1

1 (nD1G1 + D1G2)MB1 M̂B2 . (45)

5. Numerical properties

To stress the effectiveness of the proposed formula (45), 100 000 experiments have been run, with n = 10 000 for
different values of m ∈ [10, 20]. In each iteration, coefficients gk in Eq. (29), were generated with uniform distribution
in the interval [−1, 1]. We have used package Matlab [24] to compute the numerical solutions b̂T

= gTTGL→B ,
b̂T
= gTT̄GL→B , and the package Mathematica [25] (using extended precision) for the exact one and for the error

ε = max
1≤i≤m

|b̂i − bi |

|bi |
. (46)

We would like to underline that the numerical results are extremely sensitive to the execution order of operations
involved in Eq. (45). Our results were obtained by using the following three steps:

1. build matrices Q1 = D1G1, Q2 = D1G2 and the vector qT
= gT D−1

1 ,
2. build the matrix G = nQ1 MB1 + Q2 MB1 ,

3. form the vector b̂ = 1
(m−1)!

[(
qTG

)
M̂B2

]
.

Table 1 reports the maximum and the mean value of (46) obtained by calculating the coefficients b̂ by using Eq. (30)
and those which were obtained by Eq. (45) following the suggested execution order. By comparing the results, it is
possible to observe how much improvement in roundoff error is obtained by the proposed procedure. The required
conversion from the Gauss–Lobatto form to the Bernstein one is ill-conditioned for large value of m. However,
for m ≤ 20, the proposed algorithm seems to be accurate and robust as it is evident from results in Table 1. In
Table 2, we report the maximum and the mean value of (46) for the interpolation problem on the Gauss–Lobatto
nodes (m = n ∈ [5, 10]). Also in this case, comparisons between the numerical results obtained by b̂T

= gTTGL→B
and b̂T

= gTT̄GL→B put in evidence the effectiveness of the proposed algorithm. It is well known that the conversion
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Table 2
Maximum and mean value of ε, 100 000 experiments, m = n, g ∈ [−1, 1]

m T̄GL→B TGL→B
εmax εmean εmax εmean

10 1.04−10 4.88−15 6.37−08 7.02−12
9 7.61−12 2.93−15 4.69−06 4.89−11
8 4.32−11 3.83−15 2.28−08 9.41−13
7 8.63−11 3.77−15 6.04−09 3.63−13
6 1.42−11 2.21−15 4.64−10 9.72−14
5 4.72−11 1.66−15 1.34−10 2.69−14

Fig. 1. κ2(GL → B) and κ2(Ch → B) on base-2 logarithmic scale, for n = 10 000 and m ∈ [2, 100].

matrix from coefficients of a polynomial in the usual monomial or power form to Bernstein coefficients is ill-
conditioned [26]. The condition number, κ , associated with a problem is a measure of how numerically well-posed
the problem is. In the transformation problem, for a transformation matrix A, the condition number can be defined, in
any consistent norm, as:

κ(A) = ‖A‖
∥∥∥A−1

∥∥∥ . (47)

If the L2-norm is considered then

κ2(A) =
σmax(A)

σmin(A)
, (48)

where σmax(A) and σmin(A) are the maximal and minimal singular values of A respectively. Here we report the
numerical comparison between the condition number of the Chebyshev to Bernstein conversion matrix, κ2(Ch → B),
and the Gauss–Lobatto to Bernstein one, κ2(GL → B). Fig. 1 shows the curves for both the condition numbers on
base-2 logarithmic scale for m ∈ [2, 100] and n = 10 000. As is evident, κ2(GL → B) is considerably smaller
than κ2(Ch → B), i.e. the transformation from Gauss–Lobatto to Bernstein form is sensitively well-conditioned with
respect to the Chebyshev–Bernstein one.

6. Conclusions

In this paper, explicit transformation matrices to map a polynomial expressed as a weighted sum of discrete
orthogonal polynomials on Gauss–Lobatto nodes into Bernstein form and vice versa were derived. A useful explicit
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factorization for the coefficient matrix of Gauss–Lobatto polynomials and its inverse was gained. An effort to rearrange
the conversion matrix TGL→B as a product of dense matrices, with integer coefficients to avoid floating point error,
followed by divisions with diagonal matrix, was done. An advise on the execution order of operations involved
in the algorithm was given. Finally, to show that the proposed forward transformation basis is less ill-conditioned
with respect to the Chebyshev one, an experimental comparison between the condition number of the Chebyshev to
Bernstein conversion basis and the Gauss–Lobatto to Bernstein one is reported. From a practical point of view the
proposed formulas give an algorithm that seems to be accurate and robust as it is confirmed by numerical experiments.

Appendix

Lemma 1.

i−1∑
k=1

(−1)k(2k − 1)
(

k + j − 2
k − j

)
= (−1)i+1(2 j − 1)

(
i + j − 2

2 j − 1

)
, i ≥ 0, j = 1, 2, . . . , i. (A.1)

Proof. The proof of this Lemma can be easily obtained by induction on the variable i and by standard algebraic
manipulations. Since j > −1 Eq. (A.1) for i = 0 is true. Suppose that Eq. (A.1) for i = i∗ is true, i.e.,

i∗−1∑
k=1

(−1)k(2k − 1)
(

k + j − 2
k − j

)
= (−1)i

∗
+1(2 j − 1)

(
i∗ + j − 2

2 j − 1

)
, (A.2)

then for i = i∗ + 1 it must be

i∗−1∑
k=1

(−1)k(2k − 1)
(

k + j − 2
k − j

)
+ (−1)i

∗

(2i∗ − 1)
(

i∗ + j − 2
i∗ − j

)
= (−1)i

∗

(2 j − 1)
(

i∗ + j − 1
2 j − 1

)
. (A.3)

By substituting Eq. (A.2) in Eq. (A.3) and by taking into account standard properties of binomial coefficients [23], the
proof follows. �

Proposition 3.

C−1
1 (2i, 2i) =

1
n + 2i − 3

, i = 1, . . . ,
⌊m

2

⌋
,

C−1
1 (2i − 1, 2i − 1) =

1
n + 2i − 4

, i = 1, . . . ,
⌈m

2

⌉
,

C−1
1 (2i, 2 j) =

1

22i−2 j−1(n + 2 j − 3)(n + 2 j − 1)
, i = 1, . . . ,

⌊m

2

⌋
, j = 1, . . . , i − 1,

C−1
1 (2i − 1, 2 j − 1) =

1

22i−2 j−1(n + 2 j − 4)(n + 2 j − 2)
, i = 1, . . . ,

⌈m

2

⌉
, j = 1, . . . , i − 1.

(A.4)


C−1

2 (2i, 2 j) =
1

22i−2 j

(
2i − 1
i − j

)
, i = 1, . . . ,

⌊m

2

⌋
, j = 1, . . . , i,

C−1
2 (2i − 1, 2 j − 1) =

1

22i−2 j

(
2i − 2
i − j

)
, i = 1, . . . ,

⌈m

2

⌉
, j = 1, . . . , i.

(A.5)

Proof. Let Cs(m−1) and C−1
s(m−1)

be the C1 and C2 matrices with their inverses, respectively for s = 1, 2, of dimensions
(m − 1)× (m − 1). Observing the structure of matrices C1, C2 and their inverses we have

Cs(m) =

[
Cs(m−1) O

uT
s(m) αs(m)

]
, (A.6)

C−1
s(m) =

[
C−1

s(m−1)
O

vT
s(m) βs(m)

]
, (A.7)
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where O is a (m − 1) zero-column vector, and the quantities uT
s(m) , αs(m) , v

T
s(m) and βs(m) can be effortlessly derived

from Eqs. (15), (16), (A.4) and (A.5). The proof can be made by induction on the dimension m of such matrices which
leads to the following equalities{

uT
s(m)C

−1
s(m−1)

+ αs(m)v
T
s(m) = OT,

αs(m)βs(m) = 1, s = 1, 2,
(A.8)

simply verified by inspection. �
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