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Abstract

In this paper, a relation between the elementary symmetric functions on the frequen-
cies of multi-sine wave signal and its multiple integrals is proposed. In particular,
such relation is useful to obtain a closed-form expression for the frequencies estima-
tion. The approach used herein is based on the algebraic derivative method in the
frequency domain, which allows to yield exact formula in terms of multiple integrals
of the signal when placed in the time domain. Moreover, it allows to free oneself
from the hypothesis of uniform sampling. Two different ways to approach the esti-
mation are advised, the first is based on least-squares estimation, while the second
one is based on the solution of a linear system of dimension equal to the number
of sinusoidal components involved. For an easy time realization of such formula, a
time-varying filter is proposed. Due to use of multiple integrals of the signal, the
resulting parameters estimation is accurate in the face of large measurement noise.
To corroborate the theoretical analysis and to investigate the performance of the
developed algorithm, computer simulated and laboratory experiments data records
are processed.
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1 Introduction

The process of estimating the frequencies of multi-sine wave signals, from a
finite number of noisy discrete-time measurements, is an important task from
both the theoretical and practical point of view. Such problem has been the
focus of research for quite some time and still is an active research area to date
[1]-[12], since it is used in a wide range of applications in many fields such as
control theory, relaying protection, intelligent instrumentation of power sys-
tems [1], [7], [9], signal processing [12], digital communications, distribution
automation, biomedical engineering [13], radar applications, radio frequency,
instrumentation and measurement, to name just a few. There is a vast amount
of literature regarding the estimation procedures as well as the theoretical be-
havior of the different estimators; in [14] (and the references therein) a list of
several algorithms is reported: adaptive notch filter, time frequency represen-
tation based method, phase locked loop based method, eigensubspace tracking
estimation, extended Kalman filter frequency estimation, internal model based
method (for an extensive list of references see [15]). The requirements on the
frequency estimator, and so the choice of the solution, vary with the appli-
cation, but typical issues are: accuracy, processing speed or complexity, and
ability to handle multiple signals. This paper presents a method for estimating
the frequencies of a multi-sinusoidal signal, based on a new property of the
elementary symmetric functions on the frequencies. Let y(t) be the sum of np

sinusoids with unknown amplitudes, frequencies and phases

y(t) =
np
∑

k=1

Ak sin(ωkt + Φk), t ≥ 0. (1)

The frequency estimation problem can be stated as the approximation of the
function y(t) on a time-segment of the observed signal [0, Tobs], where Tobs is
the observation time, and the unknown parameters, amplitudes, frequencies,
and phases {Ai, ωi, Φi}

np

i=1, have to be found from a given discrete sequence of
noisy data obtained from some experiment. The most important parameters
to be estimated are the frequencies of the sinusoidal components, which once
estimated can in turn be used for the computation of the remaining unknown
parameters (amplitudes and phases) [16]. For this reason, the attention will
be focused on the estimation of the parameters {ωi}

np

i=1, from the available n
samples of y(t). The approach used herein, is based on the algebraic derivative
method in the frequency domain [17], which yields exact formula in terms of
multiple integrals of the signal, when placed in the time domain. The same
problem was considered for the first time with analogous techniques in [18,19].
For a good account of the algebraic derivative method, the reader should refer
to [20]. It is important to remark that an advantage of the proposed approach
is that it can be used with nonuniform sampling. The relation, between the

2



elementary symmetric functions on the frequencies of multi-sine wave signal
and multiple integrals of the signal makes the resulting parameters estimation
accurate even in the presence of large measurement noise. A theoretical ex-
planation of the robustness of the algebraic derivative method with respect to
noise is given in [21,22] by using a non standard analysis; however in the fol-
lowing an analysis of the noise contribution through a deterministic approach,
based on the model of the signal plus noise involved, is reported. The paper
is organized as follows. In the next section the problem is stated, the main
results are derived providing analytical expressions of the estimator, and some
computational aspects are also discussed. The third section contains some con-
siderations about the robustness of the proposed method. The fourth section
illustrates the performance obtained by laboratory and simulated experiments
and it is followed by final conclusions. The proofs of the results are reported
in Appendix.

2 Main results

In this section, the major outcomes of the proposed method will be provided.
Let us consider a set of m distinct numbers: Xm = {x1, x2, ..., xm}.

Definition 1 Let σ(m, q) be the function recursively defined as follows:

σ(m, q) = σ(m − 1, q) + xmσ(m − 1, q − 1), m, q integer,

σ(m, 0) = 1, m = 0, 1, ...,

(q < 0) or (m < 0) or (q > m) → σ(m, q) = 0.

(2)

The generating function of σ(m, q) [23], [24], is:

Bm(x) =
m
∏

i=1

(x − xi) =
m
∑

r=0

(−1)r+mσ(m,m − r)xr. (3)

Therefore σ(m, q) is the qth order elementary symmetric function associated
to the set Xm which is the sum of all products of q distinct elements chosen
from Xm:















σ(m, q) =
∑

1≤π1<...<πq≤m
xπ1

xπ2
...xπq

, q = 1, ...,m,

σ(m, 0) = 1.

(4)
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By eq. (3) the following equality holds:

m
∑

r=0

(−1)rxr
i σ(m,m − r) = 0, i = 1, 2, ...,m. (5)

Eq. (3) is a polynomial identity which means that, when functions σ are known,
it is possible to find the elements xi, i = 1, 2, ...,m as roots of the polynomial
Bm(x). Let

Y (s) =
np
∑

k=1

Ak

cos(Φk)ωk + sin(Φk)s

s2 + ω2
k

(6)

be the unilateral Laplace transform of y(t). An explicit relation between the
elementary symmetric functions, defined on the square of the unknown angular
frequencies Xnp

=
{

ω2
1, ω

2
2, ..., ω

2
np

}

, and multiple integrals of the signal y(t)

can be obtained by following an approach similar to that proposed in [25].

Theorem 1

np
∑

i=0

2np
∑

j=2i

(

2np

j

)(

2np − 2i

2np − j

)

(2np − j)! sj−2i d
jY (s)

dsj
σ(np, i) = 0. (7)

A sketch of the proof can be found in Appendix. The inverse Laplace transform
of eq. (7) gives:

np
∑

i=0

2np
∑

j=2i

(−1)j

(

2np

j

)(

2np − 2i

2np − j

)

(2np − j)!
dj−2i

dtj−2i

[

tjy(t)
]

σ(np, i) = 0. (8)

To eliminate the time derivations, which can amplify the effects of noise on
the signal y(t), eq. (7) is divided by s2np+1 thus introducing at least an integral
effect on each term which contains the signal y(t):

np
∑

i=0

2np
∑

j=2i

(

2np

j

)(

2np − 2i

2np − j

)

(2np − j)!
1

s2np+1+2i−j

djY (s)

dsj
σ(np, i) = 0. (9)

The explicit relation in eq. (9) allows the estimation of the elementary sym-
metric function on Xnp

. Two different approaches could be used. First, one
can directly consider the inverse Laplace transform of eq. (9) and work in the
time domain to find an estimate σ̂ of σ = {σ(np, i)}

np

i=1 in the least-squares
sense. Another way is to extend the approach used in [8] to multiple sinusoidal
signals, and to solve a linear system of np equations. A set of np equations can
be constructed by considering eq. (9) and the equations obtained by differen-
tiating it with respect to the variable s, 1, 2..., np − 1 times; in this case eq.
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(9) can be generalized as:

np
∑

i=0

2np
∑

j=2i

q
∑

k=0

(

2np

j

)(

2np − 2i

2np − j

)(

j − 2i

q − k

)

(

q

k

)

(2np − j)!

×(q − k)!
1

s2np+1+2i+q−j−k

dj+kY (s)

dsj+k
σ(np, i) = 0, q = 0, 1, ..., np − 1. (10)

By taking the inverse Laplace transform, eq. (10) can be expressed in time
domain as:

np
∑

i=0

β(q, i, t)σ(np, i) = 0, (11)

with

β(q, i, t) =
2np
∑

j=2i

q
∑

k=0

(

2np

j

)(

2np − 2i

2np − j

)(

j − 2i

q − k

)

(

q

k

)

×(2np − j)!(q − k)!
∫ (2np+1+2i+q−j−k)

(−1)j+ktj+ky(t), (12)

where we denote by
∫ (j)

φ(t)

the integral expression

∫ t

0

∫ x1

0
...
∫ xj−1

0
φ(xj)dxj...dx1,

with the definition
∫ (1)

φ(t) =
∫ t

0
φ(x1)dx1.

Note that β also depends on the parameter np. From a computational point
of view, the multiple integrals on the product between the signal and the time
variable involved in β(q, i, t), should be expressed in terms of multiple integrals
on the measured signal. The following proposition is useful to this aim.

Proposition 1 Let y(t) be a function which can be expanded in Mc-Laurin
series; then:

∫ (q)

tky(t) =
k
∑

i=0

(−1)i

(

i + q − 1

q − 1

)(

k

i

)

i! tk−i

∫ (i+q)

y(t),

q ≥ 1, k ≥ 0. (13)

Using the result stated in Proposition 1, (see Appendix for the proof), β(q, i, t)
can be rewritten as:

β(q, i, t) =
2np+q
∑

z=0

ρ̄(z, q, i, t)
∫ (2np+1+2i+q−z)

y(t), (14)
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where

ρ̄(z, q, i, t) =
2np
∑

j=0

q
∑

k=0

(−1)z

z!

(

2np

j

)(

2np − 2i

2np − j

)(

j − 2i

q − k

)

×

(

2np + 2i + q − z

k + j − z

)

(

q

k

)

(2np − j)!(q − k)!(k + j)!tz. (15)

From eq. (14) it is evident that functions β(q, i, t) are expressed as a linear
combination of multiple integrals of the signal y(t) with coefficients ρ̄(z, q, i, t).
The following result proves that the coefficients ρ̄(z, q, i, t) are independent of
the index i, thus drastically simplify eq. (15).

Theorem 2

ρ̄(z, q, i, t) = ρ(z, q, t) =
(−1)z

z!

(

4np + q − z

2np

)

(2np + q)!tz. (16)

According to the result stated by Theorem 2, (see Appendix for the proof), it
follows that:

β(q, i, t) = (2np + q)!
2np+q
∑

z=0

(−1)z

z!

(

4np + q − z

2np

)

tz

×
∫ (2np+1+2i+q−z)

y(t). (17)

Remark 1 Multiple integrals act as a low-pass filter so high frequency zero
mean disturbances on the process output and their contribution could be con-
sidered negligible. From a theoretical point of view [21], further integrations
could be added to more decrease high frequency noise effect in eq. (9).

2.1 Computational aspects

In this sub-section some computational aspects will be analyzed. First of all,
in order to get an estimation in the least-squares sense one can observe that
eq. (11) holds for all t. Let t̂ = {t1, t2, ..., tn} be a set of time instants where
eq. (11) will be evaluated, then such equation, for q = 0, can be expressed in
matrix form as:

V σ = u (18)

where V ∈ R
n×np and u ∈ R

n with

V (i, j) = β(0, j, ti), i = 1, 2, ..., n, j = 1, 2, ..., np, (19)

u(i) = −β(0, 0, ti), i = 1, 2, ..., n. (20)
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An estimate σ̂ in the least-squares sense is:

σ̂ = (V T V )−1V T u. (21)

As far as the second approach is concerned, that is the solution of a linear
system, eq. (11) is rewritten in terms of time-varying matrix form as:

M(t)σ(t) = b(t) (22)

where

Mi,j(t) = β(i − 1, j, t), i, j = 1, 2, ..., np, (23)

and

bi(t) = −β(i − 1, 0, t), i = 1, 2, ..., np. (24)

Under the hypothesis of non-singularity of the matrix M(t), an estimate σ̂(t)
can be found as:

σ̂(t) = M(t)−1b(t). (25)

Note that in both the proposed approach, the fundamental step is computation
of the coefficients β(i, j, t). This can be efficiently accomplished by considering
the linear system, driven by the signal y(t):











ẋ(t) = Fx(t) + gy(t)

β(t) = Hx(t)
(26)

where the state vector

x(t) =

[

∫ (4np+q+1)

y(t),
∫ (4np+q)

y(t), ...,
∫ (1)

y(t)

]T

contains the multiple integrals of the signal y(t), and the output β(t) is

β(t) = [β(0, 0, t)...β(0, np, t) ... β(q − 1, 0, t)...β(q − 1, np, t)]
T . (27)

The matrices F , G and H have the following expressions:

F =







04np+q I4np+q

0 0T
4np+q





 , (28)

g =







04np+q

1





 (29)
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with 0n a n × 1 vector of zeros, and H a matrix of dimensions (q + 1)(np +
1) × (4np + q + 1):

H =















H0

...

Hq















(30)

where the kth block of H is:

Hk(i, j) =



























ρ(2i + j + k − 2np − q − 3, k, t),

i = 1, ..., np + 1, j = 2np + q + 3 − 2i − k, ..., 4np + q + 3 − 2i,

0, otherwise.

(31)

Remark 2 In the numerical examples we will use both eq. (21) and (25).
Eq. (21) is based on a batch process of measurements. Eq. (25) implements a
fast, non-asymptotic method for on-line estimation in continuous time. Since
the estimation takes place in a fraction of the period of the periodic signal,
the unstable filter (see Eqs. (26)-(31)) can be switched off and re-initialized if
parameters are expected to change to new constant values.

In our simulations the integrals are solved, by using the Matlab function LSIM,
for regularly spaced time samples, as the output of the dynamical system
defined in eq. (26). LSIM selects the interpolation method automatically based
on the smoothness of the signal y(t). For non-uniform samples the integrals
are computed by using the function CUMTRAPZ.

Remark 3 Time instants t1, t2, ..., tn in which eq. (11) has to be evaluated,
are chosen coincident with the time instants in which the samples of y(t) are
collected. Clearly the choice of t1, t2, ..., tn, and therefore the instants of sam-
pling, is important for an accurate approximation of the integrals, and then
for such reason, some sampling might be better than other [26]. In many cases
integrals are numerically solved by using a polynomial which interpolates the
function y(t). For all functions not affected by Runge phenomenon, as in the
case of sinusoid functions, all choices of interpolation points are theoretically
comparable for high value of n but not comparable in terms of numerical ac-
curacy.

Remark 4 Considering that at this stage the coefficients σ have been com-
puted, the next step is to calculate the roots of the polynomial:

Bnp
(x) =

np
∏

k=1

(x − ω2
k) =

np
∑

r=0

(−1)np+rσ(np, np − r)xr, (32)

from which the frequencies of the signal components can be derived. Several
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methods exist to find the roots of a polynomial, (for a list of methods see [27]).
The proposed approach relies on the fact that the number np of the unknown
frequencies is known. If np is not known, the procedure can be repeated for
increasing np, however a number of extraneous roots can be introduced. The
problem of distinguishing these roots from the true signal-related roots has
been discussed by many authors. In [28] it is shown how to choose signal-
related roots by investigating both forward and backward linear prediction. In
[29] a procedure which uses a test of significance for each new term as it is
introduced, is discussed. Such test is based on the maximum likelihood ratio,
i.e. the ratio of the maximised likelihood for np terms to the maximised like-
lihood for (np − 1) terms. The need of npth terms is related to how bigger
this quantity is. A classical method relies on the singular value decomposition
of the forward linear prediction matrix, [25]. The number of sinusoids in the
signal is estimated by comparing the relative magnitudes of the singular val-
ues. The signal-related singular values tends to be larger than the noise-related
ones. The effect of using a truncated SVD is to increase the SNR in the data
prior to obtain the solution. In [30] is presented a modified Kumaresan-Tufts
algorithm, where the Hankel structure of the backward prediction matrix is
preserved while performing the low-rank approximation. This allows to signif-
icantly reduce the noise threshold. More recently [31], the SVD approach is
used to develop better tools for interharmonic estimation in frequency power
converters in order to avoid possible damage due to their influence. In [32] the
same problem is solved by using the Prony’s model and the min-norm method.
All the above methods are effectively only in case of uniform sampling. Since
the proposed approach works also with uniform sampling, then it is possible
to apply such methods to estimate the number of sinusoids in the signal. It is
interesting, however, to investigate different methods of model order detection
which can be used in case of non-uniform sampling, hopefully this work would
stimulate further research in this direction.

3 Analysis of noise effects

In this section the behavior of the proposed method in case of noisy signal
is discussed. The presented analysis is divided into two parts. In first one
a comparison with an existing method, designed in discrete-time, and the
Cramér-Rao lower bound is investigated through numerical simulations. In
such case a discrete sequence of noisy data is used as input to the algorithms
varying the signal-to-noise ratio. In the second part the behavior of the pro-
posed method, with respect to a continuous-time noise model (see [33]-[35]),
is discussed by using an analytic expression of the functions β related to the
noise contribution. In the sequel the acronym (CEF) is used to refer to the
proposed method.
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3.1 Discrete-time statistical properties investigation through simulations

In order to investigate the statistical properties of the estimator, noisy samples
generated by computer simulation are used. Three experiments are conducted
on the signal y(t) = A sin(ωt + φ), with A = 1, ω = 2π and φ = π/2 by
collecting, during the observation time Tobs = 1, n = 256, 512, 1000 samples
respectively. Noisy samples are obtained by adding white noise samples to
the samples of y(t). The SNR is measured in decibels as the logarithm of the
average power of the signal’s samples and the noise’s samples, r(kTs), over the
time of the experiment:

SNR = 10 log

n
∑

k=1
y(kTs)

2

n
∑

k=1
r(kTs)2

. (33)

In the sequel, comparisons between CEF, the iterative modified Prony algo-
rithm for the frequencies estimation proposed in [38] (MOS) and the Cramér-
Rao lower bound (CRLB)

CRLB ≈
12

SNR n(n2 − 1)

1

(2πTs)2
(34)

are performed. Figs. 1-3 show the mean squared frequency error for each
method versus SNR. For each value of the SNR, 1000 iterations were per-
formed by giving to both algorithms the same noisy sampled data sequence.
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Fig. 1. Mean squared frequency errors versus SNR at ω = 2π, n = 256, Tobs = 1.

From the reported results it seems evident that CEF method performs better
than MOS in hard situations corresponding to low signal-to-noise ratio. It is
important to remark that MOS method is intrinsically iterative, because its
formulation is in terms of nonlinear eigenproblem solved by inverse iteration
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Fig. 2. Mean squared frequency errors versus SNR at ω = 2π, n = 512, Tobs = 1.
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Fig. 3. Mean squared frequency errors versus SNR at ω = 2π, n = 1000, Tobs = 1.

method [38]. As n increases the absence of a clearcut boundary to the domain
of attraction of the maximum likelihood solution is to be expected for such a
non-linear algorithm [38]. For such reasons the values of n have been chosen
according to [38].

3.2 A continuous-time noise model

To avoid the mathematical difficulties due to the manipulation of a continuous-
time noise, a particular model for the noise contribution has been chosen (see
[33]-[35]). Let Ts be the sampling period and assume that {rk} is a zero-mean
normally distributed discrete-time noise sequence with covariance:

E
{

rir
T
j

}

= σ2
rδi,j,

where δi,j is the Kronecker-delta. In addition, r(t) is assumed constant during
the sampling interval:

r(t) = r(kTs), for kTs ≤ t < (k + 1)Ts. (35)
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According to standard time series analysis, it follows that the spectral density
of {rk} is constant in the frequency range [−π/Ts, π/Ts]. Since the Fourier
transform of the sampled signal is periodic with a period equal to the sampling
frequency 2π/Ts, then the noise sequence {rk} has constant spectral density
for all frequencies. In this way it is possible to obtain a continuous-time white
noise representation without adopting the theory of Brownian motion [33]. In
the proposed method, the noise attenuation is principally due to the multiple
integrals on the signal.

Taking into account the previous assumptions, the noise r(t) can be formally
expressed as

r(t) =
n−2
∑

k=0

rk {u [t − kTs] − u [t − (k + 1)Ts]} + rn−1u [t − (n − 1)Ts] , (36)

where

u[t] =











1, t ≥ 0,

0, t < 0.

Eq. (36) can be also rewritten as:

r(t) = r0 +
n−2
∑

k=0

(rk+1 − rk) u [t − (k + 1)Ts] , (37)

whose multiple integrals of r(t) are explicitly computed as:

∫ (j)

r(t) =
1

j!

{

tjr0 +
n−2
∑

k=0

[t − (k + 1)Ts]
j (rk+1 − rk) u [t − (k + 1)Ts]

}

. (38)

Therefore it is possible to obtain the noise effect on the functions β(q, i, t),
namely βr(q, i, t), as:

βr(q, i, t) =
2np+q
∑

z=0

ρ(z,q,t)
(2np+1+2i+q−z)!

×
{

t2np+1+2i+q−zr0 +
n−2
∑

k=0
[t − (k + 1)Ts]

2np+1+2i+q−z (rk+1 − rk)u [t − (k + 1)Ts]
}

.

(39)

For the purpose of our analysis suppose that |rk| < r̄ε, i.e. Prob(|rk| ≥ r̄ε) = ε,
then

|βr(q, i, t)| ≤ β̂r(q, i, t), (40)
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where

β̂r(q, i, t) = (2np + q)!
2np+q
∑

z=0

(

4np+q−z

2np

)

z!(2np+1+2i+q−z)!

×
{

t2np+1+2i+q r̄ε + 2r̄εt
z

n−2
∑

k=0
[t − (k + 1)Ts]

2np+1+2i+q−z u [t − (k + 1)Ts]
}

.

(41)

From eq. (41) it is evident that the function β̂r(q, i, t) is a monotonic increas-
ing function in the variable t, then it is straightforward that it assumes the
maximum value for t = Tobs = (n−1)Ts corresponding to the last time instant
of the observation window:

β̂rmax
(q, i) = max

t

{

β̂r(q, i, t)
}

= r̄ε(2np + q)! [(n − 1)Ts]
2np+1+2i+q

2np+q
∑

z=0

(

4np+q−z

2np

)

z!(2np + 1 + 2i + q − z)!
.

(42)

From eq. (42) it follows that

fixed n, ∀γ > 0, ∃T̄s | Ts < T̄s ⇒ β̂r(q, i, t) < γ. (43)

A different way to interpret eq. (42) could be

∀γ > 0, ∃ n̄, T̄s | (n − 1)Ts < (n̄ − 1)T̄s ⇒ β̂r(q, i, t) < γ. (44)

Therefore, although the benefits due to the multiple integrals vanish for long
observation time Tobs, for a given sequence of noise {rk}, it is always possible
to find a sampling time, or an observation time, which allows to make the
βr(q, i, t) contribution negligible.

Remark 5 Although, in a noise-free context, the observation time may be
small, in a noisy environment a strike balance has to be found because, in
this case Tobs can not be either too small, otherwise the signal contribution
on the estimation is almost zero, or too big since, as it is evident from eq.
(42) the noise effect grows with Tobs. In [21]-[22] a similar discussion has been
presented by using the framework of nonstandard analysis.

An estimation of σ(np, i), i = 1, ..., np can be obtained by solving the linear
system (22) with (23) and (24). If the signal y(t) is corrupted by the noise
r(t), then the system (22) becomes

(M(t) + ∆M(t))σ̃(t) = b(t) + ∆b(t), (45)
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where
∆Mi,j(t) = βr(i − 1, j, t), i, j = 1, 2, ..., np, (46)

and
∆bi(t) = −βr(i − 1, 0, t), i = 1, 2, ..., np. (47)

Following the same approach in [36], to study how sensitive is the solution to
perturbation in the data the classical first order bound [37] could be used:

‖σ(t) − σ̃(t)‖

‖σ(t)‖
≤

2ρ(t)κ(M(t))

1 − ρ(t)κ(M(t))
, (48)

where κ(M(t)) = ‖M(t)‖ ‖M(t)−1‖ is the matrix condition number and ρ(t)
measures the level of the noise:

ρ(t) = max

{

‖∆M(t)‖

‖M(t)‖
,
‖∆b(t)‖

‖b(t)‖

}

, (49)

with L2-vector norm and the induced spectral norm for matrices. This noise
measure is thus related to the noise-to-signal ratio.

Such considerations should be better explained by the following experiment in
which simulations on one hundred noisy signal y(t) = cos(2πt) + 2 sin(3πt +
π/3) sampled with Ts = 1 · 10−3 are carried out. Fig. (4) represents, in loga-
rithmic scale, the average of the functions ρ(t).
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Fig. 4. Mean value of ρ(t) over 100 trials.

These results confirm the necessity of achieving a compromise in the selection
of the observation time. From Fig. (4) one can observe that, increasing the
observation time, the value of ρ is unacceptable. As the observation time
decreases, the value of ρ diminishes until t∗ ≈ 4, which can be considered
optimal since it corresponds to the minimum value of ρ. Moreover for t < t∗ the
value of ρ start to grow up since for small observation time signal contribution
becomes insufficient for the estimation. Determining the optimum value for the
observation time (in the sense of achieving the best compromise), is still an
open question [36].
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4 Experimental results

This section includes some numerical results that highlight and point out the
advantages and the strengths of the proposed method, in particular it will be
devoted to laboratory and simulated experiments. The laboratory experiments
were carried out by interfacing Labview and Matlab programs. The experimen-
tal data records were acquired by using a National Instruments measurement
device, in particular a NI-DAQPad-6015 acquisition data device with 16 In-
puts, 16-bit, 200kS/s Multifunction I/O for USB. The Labview software used
is NI-DAQ 7 which allows to create a DAQ-assistant for the signal acqui-
sition. The acquired signals were generated by a 15MHz waveform generator
Agilent 33120A. The goodness of the proposed method will be measured on
m experiments in terms of

• the mean value of the frequency relative errors:

ê1 =
1

m

m
∑

i=1

eri
; (50)

• the bias:

ê2 =
1

m

m
∑

i=1

(

f − f̂i

)

; (51)

• the normalized root mean squared error:

ê3 =
1

f

√

√

√

√

1

m

m
∑

i=1

(

f − f̂i

)2
. (52)

Experiment 1

The first experiment consists in the acquisition in one period of n = 1000
samples for each of the following signals (in this case np = 1):

yi(t) = 5 sin(2π50t + Φi), i = 1, 2, ..., 500, (53)

where the parameters Φi, i = 1, 2, ..., 500 are constants and uniformly dis-
tributed in [0, π].

Naturally, the collected data are corrupted by noise present in the acquisition
process. In order to investigate the robustness against harmonic components
in the signals, in each experiment the 3rd and the 121st harmonics were added
via software:

yni
(t) = yi(t) + r(t), i = 1, 2, ..., 500, (54)

with

r(t) = An [sin(2π150t) + sin(2π6050t)] . (55)
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In eq. (55) An is chosen according to the desired value of the signal-to-
interference ratio (SIR):

SIR = 10 log10

(

Pyi

Pr

)

, (56)

where

Pf =
1

Tobs

∫ Tobs

0
f(t)2dt. (57)

Figures 5, 6 and 7 show the comparisons between CEF and MOS for indexes
ê1, ê2 and ê3 respectively, versus SIR in [5dB, 31dB] for Tobs = 0.02s. As it is
evident from the experiments, the proposed method seems to be robust with
respect to the harmonic noise and comparable with MOS.
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Fig. 5. Example 1. Comparisons between CEF and MOS respect to ê1.
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Fig. 6. Example 1. Comparisons between CEF and MOS respect to ê2.

Experiment 2

In the second experiment two signals, which are not explicitly expressed in the
form (1), but that can be led back to it by using a Fourier series expansion,
were considered.
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Fig. 7. Example 1. Comparisons between CEF and MOS respect to ê3.

? Case 1:
First, the acquisition of n = 1000 samples in one period of a 50Hz periodic

square waveform, with Ts = 2.002 · 10−5 and Tobs = 0.02 was done. In Fig.
8 the periodic square waveform acquired is shown.
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Fig. 8. Square waveform with an observation time given by Tobs = 0.02.
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Fig. 9. Triangular waveform with an observation time given by Tobs = 0.02.

The relative error between the fundamental frequency and the estimated
one is ê1 = 2.58 · 10−2. The second signal considered is represented by a
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50Hz periodic triangular waveform as depicted in Fig. 9, also in this case
n = 1000, Ts = 2.002 ·10−5 and Tobs = 0.02. For this signal the relative error
between the fundamental frequency and the estimated one is ê1 = 1.00·10−2.

? Case 2:
In this experiment, the estimation of the first two harmonics of the Fourier

series expansion of the previous acquired signals is performed, (np = 2).
On the estimation given for the square waveform the relative error on the
fundamental frequency is ê1 = 1.60 · 10−3 and ê1 = 6.26 · 10−2 for the
second harmonic. For the triangular waveform the relative error on the first
frequency is ê1 = 1.37 · 10−3 and ê1 = 6.48 · 10−2 for the second one.
Remark 6 We would like to note that in the Fourier series expansion of
the considered signals the even harmonics are absent since both waveforms
possess certain symmetrical properties.

Experiment 3

This experiment, (np = 1), is aimed to stress that our method can also be
used in case of non-uniform samples. The considered signals have the following
expression:

y(t) = 5 sin(2π50t + π/3). (58)

Three simulations were conducted by corrupting the signal with a zero mean
white noise with different values of SNR. In each simulation n = 10000 samples
of the signal were generated by using a uniform distribution on the observation
window [0, 0.02]. For each simulation, with a fixed SNR, 10000 iterations were
performed. Table 1 reports the values of ê1, ê2 and ê3 for different SNR.

SNR ê1 ê2 ê3

−10dB 3.01 · 10−2 1.51 · 100 3.81 · 10−2

0dB 9.58 · 10−3 4.79 · 10−1 1.20 · 10−2

10dB 2.99 · 10−3 1.49 · 10−1 3.75 · 10−3

Table 1
Example 3. Indexes ê1, ê2 and ê3 over 10000 tests.

Experiment 4

In order to present the quality, precision and velocity in the computation of
frequencies estimation of multi-sinusoidal signal, an experiment is carried out
by comparing the proposed method with that one proposed in [39], namely
(XIA).

It is assumed that the following signal with two frequencies is available for
measurement:

y(t) = sin(t) + 1.35 sin(5t). (59)
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The estimation was done by solving, in each sampling time, the linear system
represented by eq. (22). In [39] the following sixth-order estimator is proposed:

ξ̇1 = ξ2

ξ̇2 = ξ3

ξ̇3 = ξ4

ξ̇4 = −3ξ1 − 10ξ2 − 5ξ3 − 2.5ξ4 + y(t)

θ̇1 = 7500 (yi(t) − y(t)) ξ3

θ̇2 = 7500 (yi(t) − y(t)) ξ1,

(60)

with

yi(t) = 2.5ξ4 + 10ξ2 + (5 − θ1)ξ3 + (3 − θ2)ξ1. (61)

In simulation the sampling time Ts = 4·10−3 is chosen and all initial conditions
are set to be zero. Fig. 10 shows the comparison between CEF method (solid
line) and XIA one (dashed line). From the reported results it can be seen that
the new method produces a very quick estimate of the system frequency since
the estimation takes place in a fraction of time respect to the period of the
signal.
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Fig. 10. Observed signal in Experiment 4 and the obtained estimations (dashed line
- XIA, solid line - CEF).

Experiment 5

This experiment is carried out by comparing the proposed method with a new
approach which guarantees a globally convergence presented by Bobtsov in
[40]. The considered signal is represented by a biased sinusoid signal and is
equal to the considered one by Bobtsov:

y(t) = −2 + 2 sin(0.5t). (62)
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The simulation was carried out by choosing the same designed simulation
parameters required by Bobtsov’s method (see examples section in [40]) and a
sampling time Ts = 4·10−5. Note that, the proposed method does not consider
explicitly the case of a biased multi-sinusoidal signal, but anyway a bias can
be viewed as a particular sine wave with zero frequency and phase multiple
of π

2
. Therefore, an estimation of a biased sinusoid signal can be obtained

by adapting opportunely the proposed method to such case by considering
np = 2. In this case eq. (11) becomes

β(0, 0, t) + β(0, 1, t)σ(2, 1) + β(0, 2, t)σ(2, 2) = 0. (63)

Note that, since the bias term was considered to be a zero frequency sinusoid,
one component of the elementary symmetric functions is equal to zero, in
particular σ(2, 2) = 0, then eq. (63) can be rewritten as:

β(0, 0, t) + β(0, 1, t)σ(2, 1) = 0.

Moreover, to perform the comparison between the two approaches an “on-line”
version for our method was used

σ(2, 1) = −
β(0, 0, t)

β(0, 1, t)
, ∀β(0, 1, t) 6= 0.

The results of the computer simulation for the proposed method and the
Bobtsov’s method are depicted in Fig. 11.
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Fig. 11. Comparison between the estimation of the proposed method and Bobtsov’s
method.

As it is evident, the estimation takes place in a fraction of time while Bobtsov’s
method, which is essentially an asymptotic globally convergent observer, clearly
requires a significant convergence period as well as a priori design parameters.

Experiment 6
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In several cases it is difficult to estimates a signal with frequencies which are
close to each other, even when there is no noise [29]. For example, in the
following signal

y(t) = cos(ω1t) + cos(ω2t), (64)

with ω1 = 0.1841 and ω2 = 0.2, the beat phenomenon arises. Although the
data seem to represent a periodic signal, it seems that a frequency close to the
two considered one appears with a much lower frequency associated with the
evolution of the envelope [29]:

y(t) = 2 cos
(

ω1 + ω2

2
t
)

cos
(

ω1 − ω2

2
t
)

. (65)
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Fig. 12. Observed signal in Experiment 6 and the obtained estimations.

The estimation was done by solving, in each sampling time, the linear system
represented by eq. (22). In the performed simulation the sampling time Ts =
7.828 · 10−1 is chosen. Also in this difficult case, the new method produces a
quick estimation of the frequencies of the considered signal. Note that MOS
algorithm fails to accurately estimate the two frequencies, in fact it gives
ω̂1 = 0.1444 and ω̂2 = 0.1564.

5 Conclusion

A relation between the elementary symmetric functions on the frequencies of
multi-sine wave signal and its multiple integrals has been investigated. Such
relation has been used to derive two different approaches for estimating the
frequencies of such signal from a finite number of noisy discrete-time mea-
surements. From a computational point of view the new algorithm is simple
to implement. The experiments have shown very good performance of the es-
timator and high accuracy at the remarkably high noise level in the signal,
i.e. the estimated frequencies are close to the real ones. The proposed method
has given good estimation results in the presence of noise thanks to the use of
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multiple integrals of the measured signal acting as an intrinsic low-pass filter.
The proposed estimator needs further investigation because, for example, it
does not appear ready for an immediate extension to the case of time-varying
frequency signals, hopefully this work would stimulate further research in this
direction.

Appendix

The proof of the statements of Proposition 1, Theorem 1 and 2 are given in
the following.

Theorem 1:

np
∑

i=0

2np
∑

j=2i

(

2np

j

)(

2np − 2i

2np − j

)

(2np − j)! sj−2i d
jY (s)

dsj
σ(np, i) = 0. (A-1)

Proof. We first introduce the following lemma whose proof is omitted since
it is easily obtained by induction and by standard algebraic manipulations.

Lemma 1

dq
[

skY (s)
]

dsq
= sk−q

q
∑

j=0

(

k

q − j

)(

q

j

)

(q − j)!
djY (s)

dsj
sj . (A-2)

By eq. (6) one has

Y (s)
np
∏

i=1

(s2 + ω2
i ) =

np
∑

k=1

Ak(cos(Φk)ωk + sin(Φk)s) ×
np
∏

i=1,i6=k

(s2 + ω2
i ). (A-3)

Taking into account Lemma 1 and differentiating eq. (A-3) 2np times with
respect to s, eq. (A-1) follows.

Proposition 1: Let y(t) a function which can be expanded in Mc-Laurin series
then:

∫ (q)

tky(t) =
k
∑

i=0

(−1)i

(

i + q − 1

q − 1

)(

k

i

)

i! tk−i

∫ (i+q)

y(t),

q ≥ 1, k ≥ 0. (A-4)
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Proof. Let us suppose that the right-hand side of eq. (A-4) holds, then, by
taking into account the Mc-Laurin series of y(t):

y(t) =
∞
∑

l=0

y(l)(0)

l!
tl (A-5)

it follows that:

k
∑

i=0

(−1)i

(

i + q − 1

q − 1

)(

k

i

)

i! tk−i
∫ (i+q)

y(t)

=
∞
∑

l=0

y(l)(0)

l!

k
∑

i=0

(−1)i

(

i + q − 1

q − 1

)(

k

i

)

i! tk−i
∫ (i+q)

tl (A-6)

Since
∫ (i+q)

tl =
l!

(i + q + l)!
ti+q+l,

then eq. (A-6) becomes

∞
∑

l=0

y(l)(0)

l!

k
∑

i=0

(−1)i

(

i + q − 1

q − 1

)(

k

i

)

i! tk−i
∫ (i+q)

tl

=
∞
∑

l=0

y(l)(0)

l!

k
∑

i=0

(−1)i

(

i + q − 1

q − 1

)(

k

i

)

i!
l!

(i + q + l)!
tk+q+l. (A-7)

By standard arguments, [41], and taking into account the following equality:

k
∑

i=0

(−1)i

(

i + q − 1

q − 1

)(

k

i

)

i!
1

(i + q + l)!
=

(l + k)!

l!(l + q + k)!
, (A-8)

eq. (A-4) follows.

Theorem 2:

ρ̄(z, q, i, t) = ρ(z, q, t) =
(−1)z

z!

(

4np + q − z

2np

)

(2np + q)!tz. (A-9)

Proof. In the expression (15) a variable change j + k = c gives:

ρ̄(z, q, i, t) =
2np
∑

j=0

2np+q
∑

c=0

(−1)z

z!

(

2np

j

)(

2np − 2i

2np − j

)

(

2np + 2i + q − z

c − z

)

×

(

j − 2i

q + j − c

)(

q

c − j

)

(2np − j)!(q + j − c)! c! tz. (A-10)
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Since the summation on the index j has an explicit closure [41]:

2np
∑

j=0

(

2np

j

)(

2np − 2i

2np − j

)(

j − 2i

q + j − c

)(

q

c − j

)

(2np − j)!

×(q + j − c)! =
Γ(2np − 2i + 1)Γ(2np + q + 1)

Γ(c + 1)Γ(c − 2i − q + 1)Γ(2np + q − c + 1)
, (A-11)

then eq. (A-10) can be expressed as:

ρ̄(z, q, i, t) =
(−1)z

z!

2np+q
∑

c=0

Γ(2np − 2i + 1)Γ(2np + q + 1)

Γ(c − z + 1)Γ(2np + 2i + q − c + 1)

×
Γ(2np + 2i + q − z + 1)

Γ(c − 2i − q + 1)Γ(2np + q − c + 1)
tz. (A-12)

Eq. (A-12) is rearranged in terms of hypergeometric function 3F2 [42]:

ρ̄(z, q, i, t) = (−1)z Γ(2np − 2i + 1)Γ(2np + 2i + q − z + 1)

Γ(1 − 2i − q)Γ(2np + 2i + q + 1)Γ(1 − z)Γ(z + 1)
tz

×3F2







1,−2np − q,−2i − 2np − q 1

1 − 2i − q, 1 − z





 .

(A-13)

Let us indicate with Λ3,2 the hypergeometric function involved in (A-13). By
using the following property of the hypergeometric functions [43]:

3F2







a, b, c 1

e, f





 =
Γ(e)Γ(f)Γ(s)

Γ(a)Γ(s + b)Γ(s + c)

×3F2







e − a, f − a, s 1

s + b, s + c





 ,

s = e + f − a − b − c, s 6= 0, (A-14)

Λ3,2 can be rewritten as:

Λ3,2 =
Γ(1 − 2i − q)Γ(1 − z)Γ(4np + q − z + 1)

Γ(2np − z + 1)Γ(2np − 2i − z + 1)

×3F2







−2i − q,−z, 4np + q − z + 1 1

2np − z + 1, 2np − 2i − z + 1





 . (A-15)

The hypergeometric function in eq. (A-15) satisfies the Saalschütz’s conditions
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[43]:

3F2







−n, a, b 1

c, 1 + a + b − c − n





 =
(c − a)n(c − b)n

(c)n(c − a − b)n

,

n positive integer or zero, (A-16)

with (a)b = Γ(a+b)
Γ(a)

, then the following identity holds:

3F2





−2i − q,−z, 4np + q − z + 1 1

2np − z + 1, 2np − 2i − z + 1





=
Γ(2i − 2np)Γ(2np + 2i + q + 1)Γ(2np + 1 − z)Γ(z − 2np − q)

Γ(2np + 1)Γ(−2np − q)Γ(2np + 2i + q + 1 − z)Γ(2i + z − 2np)
. (A-17)

Taking into account eqs. (A-13), (A-15) and (A-17), and standard properties
of gamma function, eq. (16) follows.
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