2,452 research outputs found

    A finite-temperature liquid-quasicrystal transition in a lattice model

    Full text link
    We consider a tiling model of the two-dimensional square-lattice, where each site is tiled with one of the sixteen Wang tiles. The ground states of this model are all quasi-periodic. The systems undergoes a disorder to quasi-periodicity phase transition at finite temperature. Introducing a proper order-parameter, we study the system at criticality, and extract the critical exponents characterizing the transition. The exponents obtained are consistent with hyper-scaling

    Ions in Fluctuating Channels: Transistors Alive

    Full text link
    Ion channels are proteins with a hole down the middle embedded in cell membranes. Membranes form insulating structures and the channels through them allow and control the movement of charged particles, spherical ions, mostly Na+, K+, Ca++, and Cl-. Membranes contain hundreds or thousands of types of channels, fluctuating between open conducting, and closed insulating states. Channels control an enormous range of biological function by opening and closing in response to specific stimuli using mechanisms that are not yet understood in physical language. Open channels conduct current of charged particles following laws of Brownian movement of charged spheres rather like the laws of electrodiffusion of quasi-particles in semiconductors. Open channels select between similar ions using a combination of electrostatic and 'crowded charge' (Lennard-Jones) forces. The specific location of atoms and the exact atomic structure of the channel protein seems much less important than certain properties of the structure, namely the volume accessible to ions and the effective density of fixed and polarization charge. There is no sign of other chemical effects like delocalization of electron orbitals between ions and the channel protein. Channels play a role in biology as important as transistors in computers, and they use rather similar physics to perform part of that role. Understanding their fluctuations awaits physical insight into the source of the variance and mathematical analysis of the coupling of the fluctuations to the other components and forces of the system.Comment: Revised version of earlier submission, as invited, refereed, and published by journa

    Glassy behavior induced by geometrical frustration in a hard-core lattice gas model

    Full text link
    We introduce a hard-core lattice-gas model on generalized Bethe lattices and investigate analytically and numerically its compaction behavior. If compactified slowly, the system undergoes a first-order crystallization transition. If compactified much faster, the system stays in a meta-stable liquid state and undergoes a glass transition under further compaction. We show that this behavior is induced by geometrical frustration which appears due to the existence of short loops in the generalized Bethe lattices. We also compare our results to numerical simulations of a three-dimensional analog of the model.Comment: 7 pages, 4 figures, revised versio

    The nuclear AC-Stark shift in super-intense laser fields

    Get PDF
    The direct interaction of super-intense laser fields in the optical frequency domain with nuclei is studied. As main observable, we consider the nuclear AC-Stark shift of low-lying nuclear states due to the off-resonant excitation by the laser field. We include the case of accelerated nuclei to be able to control the frequency and the intensity of the laser field in the nuclear rest frame over a wide range of parameters. We find that AC-Stark shifts of the same order as in typical quantum optical systems relative to the respective transition frequencies are feasible with state-of-the-art or near-future laser field intensities and moderate acceleration of the target nuclei. Along with this shift, we find laser-induced modifications to the proton root-mean-square radii and to the proton density distribution. We thus expect direct laser-nucleus interaction to become of relevance together with other super-intense light-matter interaction processes such as pair creation.Comment: 10 pages, 2 eps figure

    Systematic Analysis Method for Color Transparency Experiments

    Full text link
    We introduce a data analysis procedure for color transparency experiments which is considerably less model dependent than the transparency ratio method. The new method is based on fitting the shape of the A dependence of the nuclear cross section at fixed momentum transfer to determine the effective attenuation cross section for hadrons propagating through the nucleus. The procedure does not require assumptions about the hard scattering rate inside the nuclear medium. Instead, the hard scattering rate is deduced directly from the data. The only theoretical input necessary is in modelling the attenuation due to the nuclear medium, for which we use a simple exponential law. We apply this procedure to the Brookhaven experiment of Carroll et al and find that it clearly shows color transparency: the effective attenuation cross section in events with momentum transfer Q2Q^2 is approximately $40\ mb\ (2.2\ GeV^2/Q^2)$. The fit to the data also supports the idea that the hard scattering inside the nuclear medium is closer to perturbative QCD predictions than is the scattering of isolated protons in free space. We also discuss the application of our approach to electroproduction experiments.Comment: 11 pages, 11 figures (figures not included, available upon request), report # KU-HEP-92-2

    Stability of vortex solitons in a photorefractive optical lattice

    Full text link
    Stability of off-site vortex solitons in a photorefractive optical lattice is analyzed. It is shown that such solitons are linearly unstable in both the high and low intensity limits. In the high-intensity limit, the vortex looks like a familiar ring vortex, and it suffers oscillatory instabilities. In the low-intensity limit, the vortex suffers both oscillatory and Vakhitov-Kolokolov instabilities. However, in the moderate-intensity regime, the vortex becomes stable if the lattice intensity or the applied voltage is above a certain threshold value. Stability regions of vortices are also determined at typical experimental parameters.Comment: 3 pages, 5 figure

    Metropolis simulations of Met-Enkephalin with solvent-accessible area parameterizations

    Get PDF
    We investigate the solvent-accessible area method by means of Metropolis simulations of the brain peptide Met-Enkephalin at 300K K. For the energy function ECEPP/2 nine atomic solvation parameter (ASP) sets are studied. The simulations are compared with one another, with simulations with a distance dependent electrostatic permittivity ϵ(r)\epsilon (r), and with vacuum simulations (ϵ=2\epsilon =2). Parallel tempering and the biased Metropolis techniques RM1_1 are employed and their performance is evaluated. The measured observables include energy and dihedral probability densities (pds), integrated autocorrelation times, and acceptance rates. Two of the ASP sets turn out to be unsuitable for these simulations. For all other systems selected configurations are minimized in search of the global energy minima, which are found for the vacuum and the ϵ(r)\epsilon(r) system, but for none of the ASP models. Other observables show a remarkable dependence on the ASPs. In particular, we find three ASP sets for which the autocorrelations at 300 K are considerably smaller than for vacuum simulations.Comment: 10 pages and 8 figure

    Beyond capitalism and liberal democracy: on the relevance of GDH Cole’s sociological critique and alternative

    Get PDF
    This article argues for a return to the social thought of the often ignored early 20th-century English thinker GDH Cole. The authors contend that Cole combined a sociological critique of capitalism and liberal democracy with a well-developed alternative in his work on guild socialism bearing particular relevance to advanced capitalist societies. Both of these, with their focus on the limitations on ‘free communal service’ in associations and the inability of capitalism to yield emancipation in either production or consumption, are relevant to social theorists looking to understand, critique and contribute to the subversion of neoliberalism. Therefore, the authors suggest that Cole’s associational sociology, and the invitation it provides to think of formations beyond capitalism and liberal democracy, is a timely and valuable resource which should be returned to

    Nucleonic resonance excitations with linearly polarized photon in γpωp\gamma p\to \omega p

    Full text link
    In this work, an improved quark model approach to the ω\omega meson photo-production with an effective Lagrangian is presented. The {\it t}-channel {\it natural}-parity exchange is taken into account through the Pomeron exchange, while the {\it unnatural}-parity exchange is described by the π0\pi^0 exchange. With a very limited number of parameters, the available experimental data in the low energy regime can be consistently accounted for. We find that the beam polarization observables show sensitivities to some {\it s}-channel individual resonances in the SU(6)O(3)SU(6)\otimes O(3) quark model symmetry limit. Especially, the two resonances P13(1720)P_{13}(1720) and F15(1680)F_{15}(1680), which belong to the representation [56,28,2,2,J][{\bf 56, ^2 8}, 2, 2, J], have dominant contributions over other excited states. Concerning the essential motivation of searching for "missing resonances" in meson photo-production, this approach provides a feasible framework, on which systematic investigations can be done.Comment: 16 pages, Revtex, 9 eps figures, to appear in PR

    Pairing Properties In Relativistic Mean Field Models Obtained From Effective Field Theory

    Get PDF
    We apply recently developed effective field theory nuclear models in mean field approximation (parameter sets G1 and G2) to describe ground-state properties of nuclei from the valley of β\beta-stability up to the drip lines. For faster calculations of open-shell nuclei we employ a modified BCS approach which takes into account quasi-bound levels owing to their centrifugal barrier, with a constant pairing strength. We test this simple prescription by comparing with available Hartree-plus-Bogoliubov results. Using the new effective parameter sets we then compute separation energies, density distributions and spin--orbit potentials in isotopic (isotonic) chains of nuclei with magic neutron (proton) numbers. The new forces describe the experimental systematics similarly to conventional non-linear σω\sigma-\omega relativistic force parameters like NL3.Comment: 29 pages, 17 figures, accepted for publication in PR
    corecore