15,360 research outputs found

    A preliminary study of the use of intercooling and reheat in conjunction with regeneration for aircraft turbine engines

    Get PDF
    The effect on fuel consumption of turbofans with intercooled, regenerative cycles and with intercooled, regenerative, reheat cycles was studied. The technology level for both engine and aircraft was that projected for 1985. The simulated mission was a 5556 km flight carrying 200 passengers at Mach 0.8 at 11582 min. Results indicate that these relatively complex cycles offer little, if any, fuel savings potential relative to a conventional turbofan cycle of comparable advanced technology. The intercooled, regenerative cycle yields about the same fuel economy as a conventional cycle at close to the same overall pressure ratio

    Rotorcraft convertible engines for the 1980s

    Get PDF
    Two rotorcraft studies were executed. The goal was to identify attractive techniques for implementing convertible powerplants for the ABC, Folded Tilt Rotor, and X-wing type high speed, high-L/D rotorcraft; to determine the DOC and fuel savings benefits achieved thereby; and to define research required to bring these powerplants into existence by the 1990's. These studies are reviewed herein and the different methods of approach are pointed out as well as the key findings. Fan shaft engines using variable inlet guide vanes or torque converters, and turboprop powerplants appear attractive. Savings in DOC and fuel consumption of over 15 percent are predicted in some cases as a result of convertible engine use rather than using separate engines for the thrust and the shaft functions. Areas of required research are fan performance (including noise), integrated engine/rotorcraft control, torque converters, turbine design, airflow for rotorcraft torque control, bleed for lift flow, and transmissions and clutches

    Pair production in a strong electric field: an initial value problem in quantum field theory

    Full text link
    We review recent achievements in the solution of the initial-value problem for quantum back-reaction in scalar and spinor QED. The problem is formulated and solved in the semiclassical mean-field approximation for a homogeneous, time-dependent electric field. Our primary motivation in examining back-reaction has to do with applications to theoretical models of production of the quark-gluon plasma, though we here address practicable solutions for back-reaction in general. We review the application of the method of adiabatic regularization to the Klein-Gordon and Dirac fields in order to renormalize the expectation value of the current and derive a finite coupled set of ordinary differential equations for the time evolution of the system. Three time scales are involved in the problem and therefore caution is needed to achieve numerical stability for this system. Several physical features, like plasma oscillations and plateaus in the current, appear in the solution. From the plateau of the electric current one can estimate the number of pairs before the onset of plasma oscillations, while the plasma oscillations themselves yield the number of particles from the plasma frequency. We compare the field-theory solution to a simple model based on a relativistic Boltzmann-Vlasov equation, with a particle production source term inferred from the Schwinger particle creation rate and a Pauli-blocking (or Bose-enhancement) factor. This model reproduces very well the time behavior of the electric field and the creation rate of charged pairs of the semiclassical calculation. It therefore provides a simple intuitive understanding of the nature of the solution since nearly all the physical features can be expressed in terms of the classical distribution function.Comment: Old paper, already published, but in an obscure journa

    Energetics of ion competition in the DEKA selectivity filter of neuronal sodium channels

    Get PDF
    The energetics of ionic selectivity in the neuronal sodium channels is studied. A simple model constructed for the selectivity filter of the channel is used. The selectivity filter of this channel type contains aspartate (D), glutamate (E), lysine (K), and alanine (A) residues (the DEKA locus). We use Grand Canonical Monte Carlo simulations to compute equilibrium binding selectivity in the selectivity filter and to obtain various terms of the excess chemical potential from a particle insertion procedure based on Widom's method. We show that K+^{+} ions in competition with Na+^{+} are efficiently excluded from the selectivity filter due to entropic hard sphere exclusion. The dielectric constant of protein has no effect on this selectivity. Ca2+^{2+} ions, on the other hand, are excluded from the filter due to a free energetic penalty which is enhanced by the low dielectric constant of protein.Comment: 14 pages, 7 figure

    Process techniques study of integrated circuits Interim scientific report, May 1968 - Feb. 1969

    Get PDF
    Oxide defects and shear stress effects in integrated circuit

    Breaking of N=8 magicity in 13Be

    Full text link
    Structure of 13^{13}Be was investigated with antisymmetrized molecular dynamics. The variation after spin and parity projections was performed. An unnatural parity 1/21/2^- state was suggested to be lower than 5/2+5/2^+ state indicating that vanishing of the N=8 magic number occurs in 13^{13}Be. A low-lying 3/2+3/2^+ state with a 2ω2\hbar\omega configuration was also suggested. Developed cluster structures were found in the intruder states. Lowering mechanism of the intruder states was discussed in terms of molecular orbitals around a 2α2\alpha core.Comment: 9 pages, 8 figures, submitted to PR

    Photodisintegration of light nuclei for testing a correlated realistic interaction in the continuum

    Full text link
    An exact calculation of the photodisintegration cross section of 3H, 3He and 4He is performed using as interaction the correlated Argonne V18 potential, constructed within the Unitary Correlation Operator Method (VUCOM). Calculations are carried out using the Lorentz Integral Transform method in conjunction with an hyperspherical harmonics basis expansion. A comparison with other realistic potentials and with available experimental data is discussed. The VUCOM potential leads to a very similar description of the cross section as the Argonne V18 interaction with the inclusion of the Urbana IX three-body force for photon energies 45< w < 120 MeV, while larger differences are found close to threshold.Comment: 9 pages, 6 figure
    corecore