635 research outputs found

    Genetic Inhibition of Phosphorylation of the Translation Initiation Factor eIF2alpha Does Not Block Abeta-Dependent Elevation of BACE1 and APP Levels or Reduce Amyloid Pathology in a Mouse Model of Alzheimer's Disease

    Get PDF
    beta-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) initiates the production of beta-amyloid (Abeta), the major constituent of amyloid plaques in Alzheimer's disease (AD). BACE1 is elevated approximately 2-3 fold in AD brain and is concentrated in dystrophic neurites near plaques, suggesting BACE1 elevation is Abeta-dependent. Previously, we showed that phosphorylation of the translation initiation factor eIF2alpha de-represses translation of BACE1 mRNA following stress such as energy deprivation. We hypothesized that stress induced by Abeta might increase BACE1 levels by the same translational mechanism involving eIF2alpha phosphorylation. To test this hypothesis, we used three different genetic strategies to determine the effects of reducing eIF2alpha phosphorylation on Abeta-dependent BACE1 elevation in vitro and in vivo: 1) a two-vector adeno-associated virus (AAV) system to express constitutively active GADD34, the regulatory subunit of PP1c eIF2alpha phosphatase; 2) a non-phosphorylatable eIF2alpha S51A knockin mutation; 3) a BACE1-YFP transgene lacking the BACE1 mRNA 5' untranslated region (UTR) required for eIF2alpha translational regulation. The first two strategies were used in primary neurons and 5XFAD transgenic mice, while the third strategy was employed only in 5XFAD mice. Despite very effective reduction of eIF2alpha phosphorylation in both primary neurons and 5XFAD brains, or elimination of eIF2alpha-mediated regulation of BACE1-YFP mRNA translation in 5XFAD brains, Abeta-dependent BACE1 elevation was not decreased. Additionally, robust inhibition of eIF2alpha phosphorylation did not block Abeta-dependent APP elevation in primary neurons, nor did it reduce amyloid pathology in 5XFAD mice. We conclude that amyloid-associated BACE1 elevation is not caused by translational de-repression via eIF2alpha phosphorylation, but instead appears to involve a post-translational mechanism. These definitive genetic results exclude a role for eIF2alpha phosphorylation in Abeta-dependent BACE1 and APP elevation. We suggest a vicious pathogenic cycle wherein Abeta42 toxicity induces peri-plaque BACE1 and APP accumulation in dystrophic neurites leading to exacerbated Abeta production and plaque progression

    Recovery of Large Angular Scale CMB Polarization for Instruments Employing Variable-delay Polarization Modulators

    Full text link
    Variable-delay Polarization Modulators (VPMs) are currently being implemented in experiments designed to measure the polarization of the cosmic microwave background on large angular scales because of their capability for providing rapid, front-end polarization modulation and control over systematic errors. Despite the advantages provided by the VPM, it is important to identify and mitigate any time-varying effects that leak into the synchronously modulated component of the signal. In this paper, the effect of emission from a 300300 K VPM on the system performance is considered and addressed. Though instrument design can greatly reduce the influence of modulated VPM emission, some residual modulated signal is expected. VPM emission is treated in the presence of rotational misalignments and temperature variation. Simulations of time-ordered data are used to evaluate the effect of these residual errors on the power spectrum. The analysis and modeling in this paper guides experimentalists on the critical aspects of observations using VPMs as front-end modulators. By implementing the characterizations and controls as described, front-end VPM modulation can be very powerful for mitigating 1/f1/f noise in large angular scale polarimetric surveys. None of the systematic errors studied fundamentally limit the detection and characterization of B-modes on large scales for a tensor-to-scalar ratio of r=0.01r=0.01. Indeed, r<0.01r<0.01 is achievable with commensurately improved characterizations and controls.Comment: 13 pages, 13 figures, 1 table, matches published versio

    Aniline incorporated silica nanobubbles

    Get PDF
    We report the synthesis of stearate functionalized nanobubbles of SiO2 with a few aniline molecules inside, represented as C6H5NH2@SiO2@stearate, exhibiting fluorescence with red-shifted emission. Stearic acid functionalization allows the materials to be handled just as free molecules, for dissolution, precipitation, storage etc. The methodology adopted involves adsorption of aniline on the surface of gold nanoparticles with subsequent growth of a silica shell through monolayers, followed by the selective removal of the metal core either using sodium cyanide or by a new reaction involving halocarbons. The material is stable and can be stored for extended periods without loss of fluorescence. Spectroscopic and voltammetric properties of the system were studied in order to understand the interaction of aniline with the shell as well as the monolayer, whilst transmission electron microscopy has been used to study the silica shell

    Beliefs about the Minds of Others Influence How We Process Sensory Information

    Get PDF
    Attending where others gaze is one of the most fundamental mechanisms of social cognition. The present study is the first to examine the impact of the attribution of mind to others on gaze-guided attentional orienting and its ERP correlates. Using a paradigm in which attention was guided to a location by the gaze of a centrally presented face, we manipulated participants' beliefs about the gazer: gaze behavior was believed to result either from operations of a mind or from a machine. In Experiment 1, beliefs were manipulated by cue identity (human or robot), while in Experiment 2, cue identity (robot) remained identical across conditions and beliefs were manipulated solely via instruction, which was irrelevant to the task. ERP results and behavior showed that participants' attention was guided by gaze only when gaze was believed to be controlled by a human. Specifically, the P1 was more enhanced for validly, relative to invalidly, cued targets only when participants believed the gaze behavior was the result of a mind, rather than of a machine. This shows that sensory gain control can be influenced by higher-order (task-irrelevant) beliefs about the observed scene. We propose a new interdisciplinary model of social attention, which integrates ideas from cognitive and social neuroscience, as well as philosophy in order to provide a framework for understanding a crucial aspect of how humans' beliefs about the observed scene influence sensory processing

    A Neural Network Model of Inhibitory Processing in Subliminal Priming

    Get PDF
    Masked Priming Experiments have revealed a precise set of facilitatory and inhibitory visual-motor control processes. Most notably, inhibitory effects have been identified in which prime-target compatibility induces performance costs and prime-target incompatibility induces performance benefits. We argue that this profile of data is commensurate with an ?emergency braking mechanism?, whereby responses can be retracted as a result of changing sensory evidence. The main contribution of this paper is to provide a neural network based explanation of this phenomenon. This is obtained through the use of feedforward inhibition to implement backward masking, lateral inhibition to implement response competition and opponent processing mechanisms to implement response retraction. Although the model remains simple, it does a very good job of reproducing the available masked priming data. For example, it reproduces a large spectrum of reaction time data across a number of different experimental conditions. Perhaps most notably however, it also reproduces Lateralized Readiness Potentials that have been recorded while subjects perform different conditions. In addition, it provides a concrete set of testable predictions

    Salience-based selection: attentional capture by distractors less salient than the target

    Get PDF
    Current accounts of attentional capture predict the most salient stimulus to be invariably selected first. However, existing salience and visual search models assume noise in the map computation or selection process. Consequently, they predict the first selection to be stochastically dependent on salience, implying that attention could even be captured first by the second most salient (instead of the most salient) stimulus in the field. Yet, capture by less salient distractors has not been reported and salience-based selection accounts claim that the distractor has to be more salient in order to capture attention. We tested this prediction using an empirical and modeling approach of the visual search distractor paradigm. For the empirical part, we manipulated salience of target and distractor parametrically and measured reaction time interference when a distractor was present compared to absent. Reaction time interference was strongly correlated with distractor salience relative to the target. Moreover, even distractors less salient than the target captured attention, as measured by reaction time interference and oculomotor capture. In the modeling part, we simulated first selection in the distractor paradigm using behavioral measures of salience and considering the time course of selection including noise. We were able to replicate the result pattern we obtained in the empirical part. We conclude that each salience value follows a specific selection time distribution and attentional capture occurs when the selection time distributions of target and distractor overlap. Hence, selection is stochastic in nature and attentional capture occurs with a certain probability depending on relative salience

    Atypical disengagement from faces and its modulation by the control of eye fixation in children with Autism Spectrum Disorder

    Get PDF
    By using the gap overlap task, we investigated disengagement from faces and objects in children (9–17 years old) with and without autism spectrum disorder (ASD) and its neurophysiological correlates. In typically developing (TD) children, faces elicited larger gap effect, an index of attentional engagement, and larger saccade-related event-related potentials (ERPs), compared to objects. In children with ASD, by contrast, neither gap effect nor ERPs differ between faces and objects. Follow-up experiments demonstrated that instructed fixation on the eyes induces larger gap effect for faces in children with ASD, whereas instructed fixation on the mouth can disrupt larger gap effect in TD children. These results suggest a critical role of eye fixation on attentional engagement to faces in both groups
    corecore