446 research outputs found

    High-temperature environments of human evolution in East Africa based on bond ordering in paleosol carbonates

    Get PDF
    Many important hominid-bearing fossil localities in East Africa are in regions that are extremely hot and dry. Although humans are well adapted to such conditions, it has been inferred that East African environments were cooler or more wooded during the Pliocene and Pleistocene when this region was a central stage of human evolution. Here we show that the Turkana Basin, Kenya—today one of the hottest places on Earth—has been continually hot during the past 4 million years. The distribution of ^(13)C-^(18)O bonds in paleosol carbonates indicates that soil temperatures during periods of carbonate formation were typically above 30 °C and often in excess of 35 °C. Similar soil temperatures are observed today in the Turkana Basin and reflect high air temperatures combined with solar heating of the soil surface. These results are specific to periods of soil carbonate formation, and we suggest that such periods composed a large fraction of integrated time in the Turkana Basin. If correct, this interpretation has implications for human thermophysiology and implies a long-standing human association with marginal environments

    Oxygen-isotope and trace element constraints on the origins of silica-rich melts in the subarc mantle

    Get PDF
    Peridotitic xenoliths in basaltic andesites from Batan island in the Luzon arc contain silica-rich (broadly dacitic) hydrous melt inclusions that were likely trapped when these rocks were within the upper mantle wedge underlying the arc. These melt inclusions have been previously interpreted to be slab-derived melts. We tested this hypothesis by analyzing the oxygen isotope compositions of these inclusions with an ion microprobe. The melt inclusions from Batan xenoliths have δ 18OVSMOW values of 6.45 ± 0.51‰. These values are consistent with the melts having been in oxygen isotope exchange equilibrium with average mantle peridotite at temperatures of ≥875°C. We suggest the δ 18O values of Batan inclusions, as well as their major and trace element compositions, can be explained if they are low-degree melts (or differentiation products of such melts) of peridotites in the mantle wedge that had previously undergone extensive melt extraction followed by metasomatism by small amounts (several percent or less) of slab-derived components. A model based on the trace element contents of Batan inclusions suggests that this metasomatic agent was an aqueous fluid extracted from subducted basalts and had many characteristics similar to slab-derived components of the sources of arc-related basalts at Batan and elsewhere. Batan inclusions bear similarities to “adakites,” a class of arc-related lava widely considered to be slab-derived melts. Our results suggest the alternative interpretation that at least some adakite-like liquids might be generated from low-degree melting of metasomatized peridotites

    Concentration and δD of molecular hydrogen in boreal forests: Ecosystem-scale systematics of atmospheric H_2

    Get PDF
    We examined the concentration and δD of atmospheric H2 in a boreal forest in interior Alaska to investigate the systematics of high latitude soil uptake at ecosystem scale. Samples collected during nighttime inversions exhibited vigorous H_2 uptake, with concentration negatively correlated with the concentration of CO_2 (−0.8 to −1.2 ppb H_2 per ppm CO_2) and negatively correlated with δD of H_2. We derived H_2 deposition rates of between 2 to 12 nmol m^(−2) s^(−1). These rates are comparable to those observed in lower latitude ecosystems. We also derive an average fractionation factor, α = D:H_(residual)/D:H_(consumed) = 0.94 ± 0.01 and suggestive evidence that α depends on forest maturity. Our results show that high northern latitude soils are a significant sink of molecular hydrogen indicating that the record of atmospheric H_2 may be sensitive to changes in climate and land use

    A dynamic Archean sulfur cycle

    Get PDF
    Many aspects of the Earth’s early sulfur cycle, from the origin of mass anomalous fractionations to the scale and degree of biological involvement, remain poorly understood. We have been studying the nature of multiple sulfur isotope (^(32)S, ^(33)S, and ^(34)S) signals using a novel combination of scanning high-resolution low-temperature superconductivity SQUID microscopy and secondary ion mass spectrometry (SIMS) techniques in a suite of samples from distal slope and basinal environments adjacent to a major Late Archean-age (~2.6-2.52 Ga) carbonate platform. Coupled with petrography, these techniques allow us to interrogate, at the same microscopic scale, the complex history of mineralization in samples containing diverse sulfide-bearing mineral components. Because of a general lack of Archean sulfate minerals, we focused our analyses on early diagenetic pyrite nodules, precipitated in surface sediments. This allows us to assay fractionations by controlling for isotope mass balance

    Distribution and consequences of VKORC1 polymorphisms in Germany

    Get PDF
    Runge, M., Von Keyserlingk, M., Braune, S., Freise, J., Eiler, T., Plenge-Bönig, A., Becker, D., Pelz, H.-J., Esther, A., Rost, S., Müller, C.R

    Extremely high He isotope ratios in MORB-source mantle from the proto-Iceland plume

    Get PDF
    The high <sup>3</sup>He/<sup>4</sup>He ratio of volcanic rocks thought to be derived from mantle plumes is taken as evidence for the existence of a mantle reservoir that has remained largely undegassed since the Earth's accretion. The helium isotope composition of this reservoir places constraints on the origin of volatiles within the Earth and on the evolution and structure of the Earth's mantle. Here we show that olivine phenocrysts in picritic basalts presumably derived from the proto-Iceland plume at Baffin Island, Canada, have the highest magmatic <sup>3</sup>He/<sup>4</sup>He ratios yet recorded. A strong correlation between <sup>3</sup>He/<sup>4</sup>He and <sup>87</sup>Sr/<sup>86</sup>Sr, <sup>143</sup>Nd/<sup>144</sup>Nd and trace element ratios demonstrate that the <sup>3</sup>He-rich end-member is present in basalts that are derived from large-volume melts of depleted upper-mantle rocks. This reservoir is consistent with the recharging of depleted upper-mantle rocks by small volumes of primordial volatile-rich lower-mantle material at a thermal boundary layer between convectively isolated reservoirs. The highest <sup>3</sup>He/<sup>4</sup>He basalts from Hawaii and Iceland plot on the observed mixing trend. This indicates that a <sup>3</sup>He-recharged depleted mantle (HRDM) reservoir may be the principal source of high <sup>3</sup>He/<sup>4</sup>He in mantle plumes, and may explain why the helium concentration of the 'plume' component in ocean island basalts is lower than that predicted for a two-layer, steady-state model of mantle structure
    corecore