170 research outputs found

    Core-shell tin oxide, indium oxide, and indium tin oxide nanoparticles on Si with tunable dispersion: Electrochemical and structural characteristics as a hybrid Li-ion battery anode

    Get PDF
    Tin oxide (SnO2) is considered a very promising material as a high capacity Li-ion battery anode. Its adoption depends on a solid understanding of factors that affect electrochemical behavior and performance such as size and composition. We demonstrate here, that defined dispersions and structures can improve our understanding of Li-ion battery anode material architecture on alloying and co-intercalation processes of Lithium with Sn from SnO2 on Si. Two different types of well-defined hierarchical Sn@SnO2 core–shell nanoparticle (NP) dispersions were prepared by molecular beam epitaxy (MBE) on silicon, composed of either amorphous or polycrystalline SnO2 shells. In2O3 and Sn doped In2O3 (ITO) NP dispersions are also demonstrated from MBE NP growth. Lithium alloying with the reduced form of the NPs and co-insertion into the silicon substrate showed reversible charge storage. Through correlation of electrochemical and structural characteristics of the anodes, we detail the link between the composition, areal and volumetric densities, and the effect of electrochemical alloying of Lithium with Sn@SnO2 and related NPs on their structure and, importantly, their dispersion on the electrode. The dispersion also dictates the degree of co-insertion into the Si current collector, which can act as a buffer. The compositional and structural engineering of SnO2 and related materials using highly defined MBE growth as model system allows a detailed examination of the influence of material dispersion or nanoarchitecture on the electrochemical performance of active electrodes and materials

    Lost in translation? The potential psychobiotic Lactobacillus rhamnosus (JB-1) fails to modulate stress or cognitive performance in healthy male subjects

    Get PDF
    Background: Preclinical studies have identified certain probiotics as psychobiotics a live microorganisms with a potential mental health benefit. Lactobacillus rhamnosus (JB-1) has been shown to reduce stress-related behaviour, corticosterone release and alter central expression of GABA receptors in an anxious mouse strain. However, it is unclear if this single putative psychobiotic strain has psychotropic activity in humans. Consequently, we aimed to examine if these promising preclinical findings could be translated to healthy human volunteers. Objectives: To determine the impact of L. rhamnosus on stress-related behaviours, physiology, inflammatory response, cognitive performance and brain activity patterns in healthy male participants. An 8 week, randomized, placebo-controlled, cross-over design was employed. Twenty-nine healthy male volunteers participated. Participants completed self-report stress measures, cognitive assessments and resting electroencephalography (EEG). Plasma IL10, IL1ÎČ, IL6, IL8 and TNFα levels and whole blood Toll-like 4 (TLR-4) agonist-induced cytokine release were determined by multiplex ELISA. Salivary cortisol was determined by ELISA and subjective stress measures were assessed before, during and after a socially evaluated cold pressor test (SECPT). Results: There was no overall effect of probiotic treatment on measures of mood, anxiety, stress or sleep quality and no significant effect of probiotic over placebo on subjective stress measures, or the HPA response to the SECPT. Visuospatial memory performance, attention switching, rapid visual information processing, emotion recognition and associated EEG measures did not show improvement over placebo. No significant anti-inflammatory effects were seen as assessed by basal and stimulated cytokine levels. Conclusions: L. rhamnosus was not superior to placebo in modifying stress-related measures, HPA response, inflammation or cognitive performance in healthy male participants. These findings highlight the challenges associated with moving promising preclinical studies, conducted in an anxious mouse strain, to healthy human participants. Future interventional studies investigating the effect of this psychobiotic in populations with stress-related disorders are required

    Doubly Constrained C-terminal of Roc (COR) Domain-Derived Peptides Inhibit Leucine-Rich Repeat Kinase 2 (LRRK2) Dimerization

    Get PDF
    Missense mutations along the leucine-rich repeat kinase 2 (LRRK2) protein are a major contributor to Parkinson's Disease (PD), the second most commonly occurring neurodegenerative disorder worldwide. We recently reported the development of allosteric constrained peptide inhibitors that target and downregulate LRRK2 activity through disruption of LRRK2 dimerization. In this study, we designed doubly constrained peptides with the objective of inhibiting C-terminal of Roc (COR)-COR mediated dimerization at the LRRK2 dimer interface. We show that the doubly constrained peptides are cell-permeant, bind wild-type and pathogenic LRRK2, inhibit LRRK2 dimerization and kinase activity, and inhibit LRRK2-mediated neuronal apoptosis, and in contrast to ATP-competitive LRRK2 kinase inhibitors, they do not induce the mislocalization of LRRK2 to skein-like structures in cells. This work highlights the significance of COR-mediated dimerization in LRRK2 activity while also highlighting the use of doubly constrained peptides to stabilize discrete secondary structural folds within a peptide sequence.</p

    Mitotic spindle association of TACC3 requires Aurora-A-dependent stabilization of a cryptic α-helix.

    Get PDF
    Aurora-A regulates the recruitment of TACC3 to the mitotic spindle through a phospho-dependent interaction with clathrin heavy chain (CHC). Here, we describe the structural basis of these interactions, mediated by three motifs in a disordered region of TACC3. A hydrophobic docking motif binds to a previously uncharacterized pocket on Aurora-A that is blocked in most kinases. Abrogation of the docking motif causes a delay in late mitosis, consistent with the cellular distribution of Aurora-A complexes. Phosphorylation of Ser558 engages a conformational switch in a second motif from a disordered state, needed to bind the kinase active site, into a helical conformation. The helix extends into a third, adjacent motif that is recognized by a helical-repeat region of CHC, not a recognized phospho-reader domain. This potentially widespread mechanism of phospho-recognition provides greater flexibility to tune the molecular details of the interaction than canonical recognition motifs that are dominated by phosphate binding

    Rechargeable Li-ion battery anode of indium oxide with visible to infra-red transparency

    Get PDF
    Unique bimodal distributions of single crystal epitaxially grown In2O3 nanodots on silicon are shown to have excellent IR transparency greater than 87% at 4 ÎŒm without sacrificing transparency in the visible region. These broadband antireflective nanodot dispersions are grown using a two-step metal deposition and oxidation by molecular beam epitaxy, and backscattered diffraction confirms a dominant (111) surface orientation. We detail the growth of a bimodal size distribution that facilitates good surface coverage (80%) while allowing a significant reduction in In2O3 refractive index. The (111) surface orientation of the nanodots, when fully ripened, allows minimum lattice mismatch strain between the In2O3 and the Si surface. This helps to circumvent potential interfacial weakening caused by volume contraction due to electrochemical reduction to lithium, or expansion during lithiation. Cycling under potentiodynamic conditions shows that the transparent anode of nanodots reversibly alloys lithium with good Coulombic efficiency, buffered by co-insertion into the silicon substrate. These properties could potentially lead to further development of similarly controlled dispersions of a range of other active materials to give transparent battery electrodes or materials capable of non-destructive in-situ spectroscopic characterization during charging and discharging

    Identifying Critical Non-Catalytic Residues that Modulate Protein Kinase A Activity

    Get PDF
    Distal interactions between discrete elements of an enzyme are critical for communication and ultimately for regulation. However, identifying the components of such interactions has remained elusive due to the delicate nature of these contacts. Protein kinases are a prime example of an enzyme with multiple regulatory sites that are spatially separate, yet communicate extensively for tight regulation of activity. Kinase misregulation has been directly linked to a variety of cancers, underscoring the necessity for understanding intramolecular kinase regulation.A genetic screen was developed to identify suppressor mutations that restored catalytic activity in vivo from two kinase-dead Protein Kinase A mutants in S. cerevisiae. The residues defined by the suppressors provide new insights into kinase regulation. Many of the acquired mutations were distal to the nucleotide binding pocket, highlighting the relationship of spatially dispersed residues in regulation.The suppressor residues provide new insights into kinase regulation, including allosteric effects on catalytic elements and altered protein-protein interactions. The suppressor mutations identified in this study also share overlap with mutations identified from an identical screen in the yeast PKA homolog Tpk2, demonstrating functional conservation for some residues. Some mutations were independently isolated several times at the same sites. These sites are in agreement with sites previously identified from multiple cancer data sets as areas where acquired somatic mutations led to cancer progression and drug resistance. This method provides a valuable tool for identifying residues involved in kinase activity and for studying kinase misregulation in disease states

    Nanobodies as allosteric modulators of Parkinson’s disease-associated LRRK2

    Get PDF
    Mutations in the gene coding for Leucine-Rich Repeat Kinase 2 (LRRK2) are a leading cause of the inherited form of Parkinson’s disease (PD), while LRRK2 overactivation is also associated with the more common idiopathic form of PD. LRRK2 is a large multi-domain protein, including a GTPase as well as a Ser/Thr protein kinase domain. Common disease-causing mutations increase LRRK2 kinase activity, presenting LRRK2 as an attractive target for inhibitory drug design. Currently, drug development has mainly focused on ATP-competitive kinase inhibitors. Here, we report the identification and characterization of a variety of Nanobodies that bind to different LRRK2 domains and inhibit or activate LRRK2 activity in cells and in vitro. Importantly, diverse groups of Nanobodies were identified that inhibit LRRK2 kinase activity through a mechanism that does not involve binding to the ATP pocket or even to the kinase domain. Moreover, while certain Nanobodies completely inhibit the LRRK2 kinase activity, we also identified Nanobodies that specifically inhibit the phosphorylation of Rab protein substrates. Finally, in contrast to current type-I kinase inhibitors, the studied kinase-inhibitory Nanobodies did not induce LRRK2 microtubule association. These comprehensively characterized Nanobodies represent versatile tools to study the LRRK2 function and mechanism, and can pave the way toward novel diagnostic and therapeutic strategies for PD

    Allosteric Inhibition of Parkinson's-Linked LRRK2 by Constrained Peptides

    Get PDF
    Leucine-Rich Repeat Kinase 2 (LRRK2) is a large, multidomain protein with dual kinase and GTPase function that is commonly mutated in both familial and idiopathic Parkinson's Disease (PD). While dimerization of LRRK2 is commonly detected in PD models, it remains unclear whether inhibition of dimerization can regulate catalytic activity and pathogenesis. Here, we show constrained peptides that are cell-penetrant, bind LRRK2, and inhibit LRRK2 activation by downregulating dimerization. We further show that inhibited dimerization decreases kinase activity and inhibits ROS production and PD-linked apoptosis in primary cortical neurons. While many ATP-competitive LRRK2 inhibitors induce toxicity and mislocalization of the protein in cells, these constrained peptides were found to not affect LRRK2 localization. The ability of these peptides to inhibit pathogenic LRRK2 kinase activity suggests that disruption of dimerization may serve as a new allosteric strategy to downregulate PD-related signaling pathways.</p

    cAMP-Dependent Signaling Pathways as Potential Targets for Inhibition of Plasmodium falciparum Blood Stages

    Get PDF
    We review the role of signaling pathways in regulation of the key processes of merozoite egress and red blood cell invasion by Plasmodium falciparum and, in particular, the importance of the second messengers, cAMP and Ca2+, and cyclic nucleotide dependent kinases. cAMP-dependent protein kinase (PKA) is comprised of cAMP-binding regulatory, and catalytic subunits. The less well conserved cAMP-binding pockets should make cAMP analogs attractive drug leads, but this approach is compromised by the poor membrane permeability of cyclic nucleotides. We discuss how the conserved nature of ATP-binding pockets makes ATP analogs inherently prone to off-target effects and how ATP analogs and genetic manipulation can be useful research tools to examine this. We suggest that targeting PKA interaction partners as well as substrates, or developing inhibitors based on PKA interaction sites or phosphorylation sites in PKA substrates, may provide viable alternative approaches for the development of anti-malarial drugs. Proximity of PKA to a substrate is necessary for substrate phosphorylation, but the P. falciparum genome encodes few recognizable A-kinase anchor proteins (AKAPs), suggesting the importance of PKA-regulatory subunit myristylation and membrane association in determining substrate preference. We also discuss how Pf14-3-3 assembles a phosphorylation-dependent signaling complex that includes PKA and calcium dependent protein kinase 1 (CDPK1) and how this complex may be critical for merozoite invasion, and a target to block parasite growth. We compare altered phosphorylation levels in intracellular and egressed merozoites to identify potential PKA substrates. Finally, as host PKA may have a critical role in supporting intracellular parasite development, we discuss its role at other stages of the life cycle, as well as in other apicomplexan infections. Throughout our review we propose possible new directions for the therapeutic exploitation of cAMP-PKA-signaling in malaria and other diseases caused by apicomplexan parasites
    • 

    corecore