57 research outputs found

    Social Distance Evaluation in Human Parietal Cortex

    Get PDF
    Across cultures, social relationships are often thought of, described, and acted out in terms of physical space (e.g. “close friends” “high lord”). Does this cognitive mapping of social concepts arise from shared brain resources for processing social and physical relationships? Using fMRI, we found that the tasks of evaluating social compatibility and of evaluating physical distances engage a common brain substrate in the parietal cortex. The present study shows the possibility of an analytic brain mechanism to process and represent complex networks of social relationships. Given parietal cortex's known role in constructing egocentric maps of physical space, our present findings may help to explain the linguistic, psychological and behavioural links between social and physical space

    From Physical Brain to Social Brain

    Get PDF

    A proposal of fuzzy connective with learning function and its application to fuzzy retrieval system

    Get PDF
    A new fuzzy connective and a structure of network constructed by fuzzy connectives are proposed to overcome a drawback of conventional fuzzy retrieval systems. This network represents a retrieval query and the fuzzy connectives in networks have a learning function to adjust its parameters by data from a database and outputs of a user. The fuzzy retrieval systems employing this network are also constructed. Users can retrieve results even with a query whose attributes do not exist in a database schema and can get satisfactory results for variety of thinkings by learning function

    Wireless insole sensor system with real-time pressure and shear force measurement

    Full text link
    The 11th International Symposium on Adaptive Motion of Animals and Machines. Kobe University, Japan. 2023-06-06/09. Adaptive Motion of Animals and Machines Organizing Committee.Poster Session P6

    Wavefunction Analysis of STM Image: Surface Reconstruction of Organic Charge Transfer Salts

    Get PDF
    In this chapter, the wavefunction analysis is demonstrated, applied to the organic charge transfer salts composed of electron donor and electron acceptor molecules. Scanning tunneling microscopy (STM) images of the surface donor layers in the three charge transfer salts, α-(BEDT-TTF)2I3, β-(BEDT-TTF)2I3, and (EDO-TTF)2PF6, are analyzed with the atomic π electron orbitals of sulfur, oxygen, and carbon atoms. We have deduced three different kinds of surface molecular reconstructions as follows: (1) charge redistribution in α-(BEDT-TTF)2I3, (2) translational reconstruction up to 0.1 nm in β-(BEDT-TTF)2I3, and (3) rotational reconstruction transforming the 1D axis from the a axis to the b axis in (EDO-TTF)2PF6. Finally, it is concluded that the surface reconstruction is ascribed to the additional gain of the cohesive energy of the π electron system, provoked by the reduced steric hindrance with the anions of the missing outside double layer. The investigations of the surface states provide not only interesting behaviors of the surface cation layer, but also important insights into the electronic states of a lot of similar charge transfer crystals, as demonstrated in α-(BEDT-TTF)2I3

    Different impressions of other agents obtained through social interaction uniquely modulate dorsal and ventral pathway activities in the social human brain

    Get PDF
    Internal (neuronal) representations in the brain are modified by our experiences, and this phenomenon is not unique to sensory and motor systems. Here, we show that different impressions obtained through social interaction with a variety of agents uniquely modulate activity of dorsal and ventral pathways of the brain network that mediates human social behavior. We scanned brain activity with functional magnetic resonance imaging (fMRI) in 16 healthy volunteers when they performed a simple matching-pennies game with a human, human-like android, mechanical robot, interactive robot, and a computer. Before playing this game in the scanner, participants experienced social interactions with each opponent separately and scored their initial impressions using two questionnaires. We found that the participants perceived opponents in two mental dimensions: one represented “mind-holderness” in which participants attributed anthropomorphic impressions to some of the opponents that had mental functions, while the other dimension represented “mind-readerness” in which participants characterized opponents as intelligent. Interestingly, this “mind-readerness” dimension correlated to participants frequently changing their game tactic to prevent opponents from envisioning their strategy, and this was corroborated by increased entropy during the game. We also found that the two factors separately modulated activity in distinct social brain regions. Specifically, mind-holderness modulated activity in the dorsal aspect of the temporoparietal junction (TPJ) and medial prefrontal and posterior paracingulate cortices, while mind-readerness modulated activity in the ventral aspect of TPJ and the temporal pole. These results clearly demonstrate that activity in social brain networks is modulated through pre-scanning experiences of social interaction with a variety of agents. Furthermore, our findings elucidated the existence of two distinct functional networks in the social human brain. Social interaction with anthropomorphic or intelligent-looking agents may distinctly shape the internal representation of our social brain, which may in turn determine how we behave for various agents that we encounter in our society

    Neural Substrate of Body Size: Illusory Feeling of Shrinking of the Waist

    Get PDF
    The perception of the size and shape of one's body (body image) is a fundamental aspect of how we experience ourselves. We studied the neural correlates underlying perceived changes in the relative size of body parts by using a perceptual illusion in which participants felt that their waist was shrinking. We scanned the brains of the participants using functional magnetic resonance imaging. We found that activity in the cortices lining the left postcentral sulcus and the anterior part of the intraparietal sulcus reflected the illusion of waist shrinking, and that this activity was correlated with the reported degree of shrinking. These results suggest that the perceived changes in the size and shape of body parts are mediated by hierarchically higher-order somatosensory areas in the parietal cortex. Based on this finding we suggest that relative size of body parts is computed by the integration of more elementary somatic signals from different body segments

    Improving Human Plateaued Motor Skill with Somatic Stimulation

    Get PDF
    Procedural motor learning includes a period when no substantial gain in performance improvement is obtained even with repeated, daily practice. Prompted by the potential benefit of high-frequency transcutaneous electrical stimulation, we examined if the stimulation to the hand reduces redundant motor activity that likely exists in an acquired hand motor skill, so as to further upgrade stable motor performance. Healthy participants were trained until their motor performance of continuously rotating two balls in the palm of their right hand became stable. In the series of experiments, they repeated a trial performing this cyclic rotation as many times as possible in 15 s. In trials where we applied the stimulation to the relaxed thumb before they initiated the task, most reported that their movements became smoother and they could perform the movements at a higher cycle compared to the control trials. This was not possible when the dorsal side of the wrist was stimulated. The performance improvement was associated with reduction of amplitude of finger displacement, which was consistently observed irrespective of the task demands. Importantly, this kinematic change occurred without being noticed by the participants, and their intentional changes of motor strategies (reducing amplitude of finger displacement) never improved the performance. Moreover, the performance never spontaneously improved during one-week training without stimulation, whereas the improvement in association with stimulation was consistently observed across days during training on another week combined with the stimulation. The improved effect obtained in stimulation trials on one day partially carried over to the next day, thereby promoting daily improvement of plateaued performance, which could not be unlocked by the first-week intensive training. This study demonstrated the possibility of effectively improving a plateaued motor skill, and pre-movement somatic stimulation driving this behavioral change
    corecore