11 research outputs found

    A Review Characterizing 25 Ecosystem Challenges to Be Addressed by an Ecosystem Approach to Fisheries Management in Europe

    Get PDF
    The impacts of fisheries on ocean resources are no longer considered in isolation but should account for broader ecosystem effects. However, ongoing ecosystem-wide changes added to the inherent dynamics of marine ecosystems, create challenges for fisheries and fisheries management by affecting our ability to ensure future fishing opportunities and sustainable use of the seas. By reviewing a corpus of fisheries science literature, we contribute to informing managers and policymakers with considerations of the various threats to fisheries and the marine ecosystems that support them. We identify and describe 25 ecosystem challenges and 7 prominent families of management options to address them. We capture the challenges acting within three broad categories: (i) fishing impacts on the marine environments and future fishing opportunities, (ii) effects of environmental conditions on fish and fishing opportunities, and (iii) effects of context in terms of socioeconomics, fisheries management, and institutional set-up on fisheries. Our review shows that, while most EU fisheries are facing a similar array of challenges, some of them are specific to regions or individual fisheries. This is reflected in selected regional cases taking different perspectives to exemplify the challenges along with fishery-specific cases. These cases include the dramatic situation of the Baltic Sea cod, facing an array of cumulative pressures, the multiple and moving ecosystem interactions that rely on the North Sea forage fish facing climate change, the interaction of fishing and fish stocks in a fluctuating mixed fishery in the Celtic Sea, the bycatch of marine mammals and seabirds and habitat degradation in the Bay of Biscay, and finally the under capacity and lack of fundamental knowledge on some features of the EU Outermost Regions. In addition to these ecoregion specific findings, we discuss the outcomes of our review across the whole of European waters and we conclude by recognizing that there are knowledge gaps regarding the direction of causality, nonlinear responses, and confounding effects. All of the challenges we identify and characterize may guide further data collection and research coordination to improve our fundamental understanding of the system and to monitor real changes within it, both of which are required to inform an Ecosystem Approach to Fisheries Management (EAFM). An European EAFM could build upon an array of management measures currently tailored for fisheries management only, including promoting funding interdisciplinary research and ecosystem monitoring. Such integrative management should reduce uncertainties in environmental, social and economic trends, and lower the risk for disruptive events or ecosystem effects with far-reaching consequences, including a shift toward less productive marine ecosystems.En prens

    Differences in biological traits composition of benthic assemblages between unimpacted habitats

    Get PDF
    There is an implicit requirement under contemporary policy drivers to understand the characteristics of benthic communities under anthropogenically-unimpacted scenarios. We used a trait-based approach on a large dataset from across the European shelf to determine how functional characteristics of unimpacted benthic assemblages vary between different sedimentary habitats. Assemblages in deep, muddy environments unaffected by anthropogenic disturbance show increased proportions of downward conveyors and surface deposit-feeders, while burrowing, diffusive mixing, scavenging and predation traits assume greater numerical proportions in shallower habitats. Deep, coarser sediments are numerically more dominated by sessile, upward conveyors and suspension feeders. In contrast, unimpacted assemblages of coarse sediments in shallower regions are proportionally dominated by the diffusive mixers, burrowers, scavengers and predators. Finally, assemblages of gravelly sediments exhibit a relatively greater numerical dominance of non-bioturbators and asexual reproducers. These findings may be used to form the basis of ranking habitats along a functional sensitivity gradient

    Bottom trawl fishing footprints on the world’s continental shelves

    Get PDF
    Bottom trawlers land around 19 million tons of fish and invertebrates annually, almost one-quarter of wild marine landings. The extent of bottom trawling footprint (seabed area trawled at least once in a specified region and time period) is often contested but poorly described. We quantify footprints using high-resolution satellite vessel monitoring system (VMS) and logbook data on 24 continental shelves and slopes to 1,000-m depth over at least 2 years. Trawling footprint varied markedly among regions: from 50% in some European seas. Overall, 14% of the 7.8 million-km2 study area was trawled, and 86% was not trawled. Trawling activity was aggregated; the most intensively trawled areas accounting for 90% of activity comprised 77% of footprint on average. Regional swept area ratio (SAR; ratio of total swept area trawled annually to total area of region, a metric of trawling intensity) and footprint area were related, providing an approach to estimate regional trawling footprints when high-resolution spatial data are unavailable. If SAR was ≀0.1, as in 8 of 24 regions, there was >95% probability that >90% of seabed was not trawled. If SAR was 7.9, equal to the highest SAR recorded, there was >95% probability that >70% of seabed was trawled. Footprints were smaller and SAR was ≀0.25 in regions where fishing rates consistently met international sustainability benchmarks for fish stocks, implying collateral environmental benefits from sustainable fishing

    Estimating seabed pressure from demersal trawls, seines, and dredges based on gear design and dimensions

    No full text
    This study assesses the seabed pressure of towed fishing gears and models the physical impact (area and depth of seabed penetration) from trip-based information of vessel size, gear type, and catch. Traditionally fishing pressures are calculated top-down by making use of large-scale statistics such as logbook data. Here, we take a different approach starting from the gear itself (design and dimensions) to estimate the physical interactions with the seabed at the level of the individual fishing operation. We defined 14 distinct towed gear groups in European waters (eight otter trawl groups, three beam trawl groups, two demersal seine groups, and one dredge group), for which we established gear “footprints”. The footprint of a gear is defined as the relative contribution from individual larger gear components, such as trawl doors, sweeps, and groundgear, to the total area and severity of the gear's impact. An industry-based survey covering 13 countries provided the basis for estimating the relative impact-area contributions from individual gear components, whereas sediment penetration was estimated based on a literature review. For each gear group, a vessel size–gear size relationship was estimated to enable the prediction of gear footprint area and sediment penetration from vessel size. Application of these relationships with average vessel sizes and towing speeds provided hourly swept-area estimates by mĂ©tier

    A model approach to estimate the hydrodynamic drag and sediment mobilisation applied to tickler chain beam trawls and pulse beam trawls used in the North Sea fishery for sole

    No full text
    Bottom trawls impact the seafloor and benthic ecosystem. To estimate the trawling impact, information is required about the dimensions of the gear that determine their footprint, sediment penetration depth and hydrodynamic drag that determines the amount of sediment mobilised in the wake of the trawl. Here we present the dimension of gear components of the different beam trawls used in the North Sea flatfish fishery including the traditional tickler chain beam trawl, chain-mat trawl and pulse trawls. The hydrodynamic drag of the gears is estimated by summing the drag of different gear components using empirical equations that describe the hydrodynamic drag of different shaped objects, including cylinders, blocks and fish nets. Netting contributes most to the hydrodynamic drag, followed by the ground rope, tickler chains and chain mat. The hydrodynamic drag of bottom components, which determines sediment mobilisation, is estimated at 6.2 and 6.3 kN.m-1 for a traditional tickler chain and chain-mat trawl, and 3.8 kN.m-1 for a pulse trawler. Drag of pulse trawls depends on their rigging and ranges between 2.8 – 3.2 kN.m-1 for the rectangular ground rope types and 4.0 – 4.1 kN.m-1 for the sole rope type. The amount of sediment mobilised in a seabed habitat with 20% silt content is 24 kg.m-2 for a large tickler chain and chain-mat trawler and between 12 – 16 kg.m-2 for a large pulse trawler

    Improving seabed substrate mapping with high-resolution bottom trawl data

    No full text
    Accurate seabed substrate maps are essential for marine management, as substrate is an important component of the habitat type and used as a proxy for the prevailing benthic community. The provision of substrate maps, however, is hampered by the excessive costs of at-sea observations and, consequently, the uncertainty associated with spatial models used to interpolate these observations to full-coverage maps. Here, we tested whether high-resolution distributions of bottom trawling activity, readily collected under EU law, could improve the accuracy of substrate interpolations. Fishing distributions contain indirect information of the substrate type, as targeted species often show habitat preferences and gear types are designed for particular substrates. For two study areas in the Danish North Sea, we demonstrate that including spatial distributions of bottom trawl fisheries in substrate interpolation models results in more accurate substrate predictions. This potentially opens a novel source of previously unused information for improved seabed substrate interpolation

    Data underlying the publication: Mitigating ecosystem impacts of bottom trawl fisheries for North Sea sole Solea solea by replacing mechanical with electrical stimulation

    No full text
    The csv data file “SAR_TBB.csv” contains data on habitat characteristics and fishing effort of the Dutch beam trawl fleet by grid cells of 1 minute longitude * 1 minute latitude in the North Sea used to study the changes in trawling impact on the benthic ecosystem due to the transition from conventional beam trawling to pulse trawling. Habitat variables include %sand, %gravel, %mud, bed shear stress (N.m-2) and level 3 EUNIS habitat type. Fishing effort, expressed as the annual swept area ratio (area swept by the gear in km2 / surface area of the grid cell (km2)), is given for the total Dutch beam trawl fleet and for a subset of vessels holding a pulse license (PLH) when fishing with the conventional beam trawl gear (PLH.T.year) or with the innovative pulse trawl (PLH.P.year)

    Towards a framework for the quantitative assessment of trawling impact on the seabed and benthic ecoystem

    No full text
    A framework to assess the impact of mobile fishing gear on the seabed and benthic ecosystem is presented. The framework that can be used at regional and local scales provides indicators for both trawling pressure and ecological impact. It builds on high-resolution maps of trawling intensity and considers the physical effects of trawl gears on the seabed, on marine taxa, and on the functioning of the benthic ecosystem. Within the framework, a reductionist approach is applied that breaks down a fishing gear into its components, and a number of biological traits are chosen to determine either the vulnerability of the benthos to the impact of that gear component, or to provide a proxy for their ecological role. The approach considers gear elements, such as otter boards, twin trawl clump, and groundrope, and sweeps that herd the fish. The physical impact of these elements on the seabed, comprising scraping of the seabed, sediment mobilization, and penetration, is a function of the mass, size, and speed of the individual component. The impact of the elements on the benthic community is quantified using a biological-trait approach that considers the vulnerability of the benthic community to trawl impact (e.g. sediment position, morphology), the recovery rate (e.g. longevity, maturation age, reproductive characteristics, dispersal), and their ecological role. The framework is explored to compare the indicators for pressure and ecological impact of bottom trawling in three main seabed habitat types in the North Sea. Preliminary results show that the Sublittoral mud (EUNIS A5.3) is affected the most due to the combined effect of intensive fishing and large proportions of long-lived tax

    Fishing Sea-bed Habitat Risk Assessment (A framework towards the quantitative assessment of trawling impact on the sea-bed and benthic ecosystem)

    No full text
    A framework to assess the impact of mobile fishing gear on the seabed and benthic ecosystem is presented. The framework that can be used at regional and local scales considers the physical effects of trawl gears on the seabed, on marine taxa and the functioning of the benthic ecosystem. A reductionist approach is applied that breaks down a fishing gear in its components and distinguishes a number of biological traits that are chosen to determine the vulnerability of benthos for the impact of a gear component or to provide a proxy for their ecological role. The approach considers a wide variety of gear elements, such as otter boards, twin trawl clump and ground-rope, and, sweeps that herd the fish. The physical impact of these elements on the seabed, comprising scraping of the seabed, sediment mobilisation and penetration, are a function of the mass, size and speed of the individual component. The impact of the elements on the benthic community are quantified using a biological-trait approach, that considers the vulnerability of the benthic community to trawl impact (e.g. sediment position, morphology), the recovery rate (e.g. longevity, maturation age, reproductive characteristics) and the ecological role. The framework is explored to compare the indicators for pressure and ecological impact of bottom trawling in three main seabed habitat types in the North Sea. Preliminary results show that the sublittoral mud habitat is impacted most due to the combined effect of an intensive fishing and high proportions of long-lived taxa
    corecore