104 research outputs found
Dynamics of Laterally Propagating Flames in X-ray Bursts. I. Burning Front Structure
We investigate the structure of laterally-propagating flames through the
highly-stratified burning layer in an X-ray burst. Two-dimensional
hydrodynamics simulations of flame propagation are performed through a rotating
plane-parallel atmosphere, exploring the structure of the flame. We discuss the
approximations needed to capture the length and time scales at play in an X-ray
burst and describe the flame acceleration observed. Our studies complement
other multidimensional studies of burning in X-ray bursts.Comment: Submitted to Ap
Sensitivity of He Flames in X-ray Bursts to Nuclear Physics
Through the use of axisymmetric 2D hydrodynamic simulations, we further
investigate laterally propagating flames in X-ray bursts (XRBs). Our aim is to
understand the sensitivity of a propagating helium flame to different nuclear
physics. Using the Castro simulation code, we confirm the phenomenon of
enhanced energy generation shortly after a flame is established after by adding
C(p, )N(, p)O to the network, in
agreement with the past literature. This sudden outburst of energy leads to a
short accelerating phase, causing a drastic alteration in the overall dynamics
of the flame in XRBs. Furthermore, we investigate the influence of different
plasma screening routines on the propagation of the XRB flame. We finally
examine the performance of simplified-SDC, a novel approach to hydrodynamics
and reaction coupling incorporated in Castro, as an alternative to
operator-splitting.Comment: 18 pages, 17 figure
Collecting cometary soil samples? Development of the ROSETTA sample acquisition system
In the reference scenario of the ROSETTA CNRS mission, the Sample Acquisition System is mounted on the Comet Lander. Its tasks are to acquire three kinds of cometary samples and to transfer them to the Earth Return Capsule. Operations are to be performed in vacuum and microgravity, on a probably rough and dusty surface, in a largely unknown material, at temperatures in the order of 100 K. The concept and operation of the Sample Acquisition System are presented. The design of the prototype corer and surface sampling tool, and of the equipment for testing them at cryogenic temperatures in ambient conditions and in vacuum in various materials representing cometary soil, are described. Results of recent preliminary tests performed in low temperature thermal vacuum in a cometary analog ice-dust mixture are provided
Mechanistic insights revealed by lipid profiling in monogenic insulin resistance syndromes.
BACKGROUND: Evidence from several recent metabolomic studies suggests that increased concentrations of triacylglycerols with shorter (14-16 carbon atoms), saturated fatty acids are associated with insulin resistance and the risk of type 2 diabetes. Although causality cannot be inferred from association studies, patients in whom the primary cause of insulin resistance can be genetically defined offer unique opportunities to address this challenge. METHODS: We compared metabolite profiles in patients with congenital lipodystrophy or loss-of-function insulin resistance (INSR gene) mutations with healthy controls. RESULTS: The absence of significant differences in triacylglycerol species in the INSR group suggest that changes previously observed in epidemiological studies are not purely a consequence of insulin resistance. The presence of triacylglycerols with lower carbon numbers and high saturation in patients with lipodystrophy suggests that these metabolite changes may be associated with primary adipose tissue dysfunction. The observed pattern of triacylglycerol species is indicative of increased de novo lipogenesis in the liver. To test this we investigated the distribution of these triacylglycerols in lipoprotein fractions using size exclusion chromatography prior to mass spectrometry. This associated these triacylglycerols with very low-density lipoprotein particles, and hence release of triacylglycerols into the blood from the liver. To test further the hepatic origin of these triacylglycerols we induced de novo lipogenesis in the mouse, comparing ob/ob and wild-type mice on a chow or high fat diet, confirming that de novo lipogenesis induced an increase in relatively shorter, more saturated fatty acids. CONCLUSIONS: Overall, these studies highlight hepatic de novo lipogenesis in the pathogenesis of metabolic dyslipidaemia in states where energy intake exceeds the capacity of adipose tissue
Evidence for West Nile Virus and Usutu Virus Infections in Wild and Resident Birds in Germany, 2017 and 2018
Wild birds play an important role as reservoir hosts and vectors for zoonotic arboviruses and foster their spread. Usutu virus (USUV) has been circulating endemically in Germany since 2011, while West Nile virus (WNV) was first diagnosed in several bird species and horses in 2018. In 2017 and 2018, we screened 1709 live wild and zoo birds with real-time polymerase chain reaction and serological assays. Moreover, organ samples from bird carcasses submitted in 2017 were investigated. Overall, 57 blood samples of the live birds (2017 and 2018), and 100 organ samples of dead birds (2017) were positive for USUV-RNA, while no WNV-RNA-positive sample was found. Phylogenetic analysis revealed the first detection of USUV lineage Europe 2 in Germany and the spread of USUV lineages Europe 3 and Africa 3 towards Northern Germany. USUV antibody prevalence rates were high in Eastern Germany in both years. On the contrary, in Northern Germany, high seroprevalence rates were first detected in 2018, with the first emergence of USUV in this region. Interestingly, high WNV-specific neutralizing antibody titers were observed in resident and short-distance migratory birds in Eastern Germany in 2018, indicating the first signs of a local WNV circulation
The development and validation of a fast and robust dried blood spot based lipid profiling method to study infant metabolism.
Early life exposures and metabolic programming are associated with later disease risk. In particular lipid metabolism is thought to play a key role in the development of the metabolic syndrome and insulin resistance in later life. Investigative studies of metabolic programming are limited by the ethics and practicalities of sample collection in small infants. Dried blood spots on filter paper, derived from heel pricks are considered as the most suitable option for this age group. We validated a novel lipid profiling method, based on high resolution mass spectrometry to successfully determine the lipid composition of infants using dried blood spots. The spotting and air drying of blood on paper has noticeable effects on many of the lipids, leading to lipid oxidation and hydrolysis, which demand careful interpretation of the obtained data. We compared the lipid profiles from plasma or whole blood samples and the results from dried blood spots to determine if these revealed the same inter-subject differences. The results from dried blood spots were no less reproducible than other lipid profiling methods which required comparatively larger sample volumes. Therefore, lipid profiles obtained from dried blood spots can be successfully used to monitor infancy lipid metabolism and we show significant differences in the lipid metabolism of infants at age 3 versus 12Â months
pynucastro 2.1: an update on the development of a python library for nuclear astrophysics
pynucastro is a python library that provides visualization and analyze
techniques to classify, construct, and evaluate nuclear reaction rates and
networks. It provides tools that allow users to determine the importance of
each rate in the network, based on a specified list of thermodynamic
properties. Additionally, pynucastro can output a network in C++ or python for
use in simulation codes, include the AMReX-Astrophysics simulation suite. We
describe the changes in pynucastro since the last major release, including new
capabilities that allow users to generate reduced networks and thermodynamic
tables for conditions in nuclear statistical equilibrium
Development and validation of a robust automated analysis of plasma phospholipid fatty acids for metabolic phenotyping of large epidemiological studies.
A fully automated, high-throughput method was developed to profile the fatty acids of phospholipids from human plasma samples for application to a large epidemiological sample set (n > 25,000). We report here on the data obtained for the quality-control materials used with the first 860 batches, and the validation process used. The method consists of two robotic systems combined with gas chromatography, performing lipid extraction, phospholipid isolation, hydrolysis and derivatization to fatty-acid methyl esters, and on-line analysis. This is the first report showing that fatty-acid profiling is an achievable strategy for metabolic phenotyping in very large epidemiological and genetic studies.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
The PrPC Cl fragment derived from the ovine A(136)R(154)R(171) PRNP allele is highly abundant in sheep brain and inhibits fibrillisation of full-length PrPC protein in vitro
AbstractExpression of the cellular prion protein (PrPC) is crucial for the development of prion diseases. Resistance to prion diseases can result from reduced availability of the prion protein or from amino acid changes in the prion protein sequence. We propose here that increased production of a natural PrP α-cleavage fragment, C1, is also associated with resistance to disease. We show, in brain tissue, that ARR homozygous sheep, associated with resistance to disease, produced PrPC comprised of 25% more C1 fragment than PrPC from the disease-susceptible ARQ homozygous and highly susceptible VRQ homozygous animals. Only the C1 fragment derived from the ARR allele inhibits in-vitro fibrillisation of other allelic PrPC variants. We propose that the increased α-cleavage of ovine ARR PrPC contributes to a dominant negative effect of this polymorphism on disease susceptibility. Furthermore, the significant reduction in PrPC β-cleavage product C2 in sheep of the ARR/ARR genotype compared to ARQ/ARQ and VRQ/VRQ genotypes, may add to the complexity of genetic determinants of prion disease susceptibility
Epizootic Emergence of Usutu Virus in Wild and Captive Birds in Germany
This study aimed to identify the causative agent of mass mortality in wild and captive birds in southwest Germany and to gather insights into the phylogenetic relationship and spatial distribution of the pathogen. Since June 2011, 223 dead birds were collected and tested for the presence of viral pathogens. Usutu virus (USUV) RNA was detected by real-time RT-PCR in 86 birds representing 6 species. The virus was isolated in cell culture from the heart of 18 Blackbirds (Turdus merula). USUV-specific antigen was demonstrated by immunohistochemistry in brain, heart, liver, and lung of infected Blackbirds. The complete polyprotein coding sequence was obtained by deep sequencing of liver and spleen samples of a dead Blackbird from Mannheim (BH65/11-02-03). Phylogenetic analysis of the German USUV strain BH65/11-02-03 revealed a close relationship with strain Vienna that caused mass mortality among birds in Austria in 2001. Wild birds from lowland river valleys in southwest Germany were mainly affected by USUV, but also birds kept in aviaries. Our data suggest that after the initial detection of USUV in German mosquitoes in 2010, the virus spread in 2011 and caused epizootics among wild and captive birds in southwest Germany. The data also indicate an increased risk of USUV infections in humans in Germany
- …