40 research outputs found

    Control of pore geometry in soil microcosms and its effect on the growth and spread of <i>Pseudomonas </i>and <i>Bacillus</i> sp.

    Get PDF
    Simplified experimental systems, often referred to as microcosms, have played a central role in the development of modern ecological thinking on issues ranging from competitive exclusion to examination of spatial resources and competition mechanisms, with important model-driven insights to the field. It is widely recognized that soil architecture is the key driver of biological and physical processes underpinning ecosystem services, and the role of soil architecture and soil physical conditions is receiving growing interest. The difficulty to capture the architectural heterogeneity in microcosms means that we typically disrupt physical architecture when collecting soils. We then use surrogate measures of soil architecture such as aggregate size distribution and bulk-density, in an attempt to recreate conditions encountered in the field. These bulk-measures are too crude and do not describe the heterogeneity at microscopic scales where microorganisms operate. In the current paper we therefore ask the following questions: (i) To what extent can we control the pore geometry at microscopic scales in microcosm studies through manipulation of common variables such as density and aggregate size?; (ii) What is the effect of pore geometry on the growth and spread dynamics of bacteria following introduction into soil? To answer these questions, we focus on Pseudomonas sp. and Bacillus sp. We study the growth of populations introduced in replicated microcosms packed at densities ranging from 1.2 – 1.6 g cm-3, as well as packed with different aggregate sizes at identical bulk-density. We use X-ray CT and show how pore geometrical properties at microbial scales such as connectivity and solid-pore interface area, are affected by the way we prepare microcosms. At a bulk-density of 1.6 g cm-3 the average number of Pseudomonas was 63% lower than at a bulk-density of 1.3 g cm-3. For Bacillus this reduction was 66 %. Depending on the physical conditions, bacteria in half the samples took between 1.62 and 9.22 days to spread 1.5 cm. Bacillus did spread faster than Pseudomonas and both did spread faster at a lower bulk-density. Our results highlight the importance that soil physical properties be considered in greater detail in soil microbiological studies than is currently the case

    Combination of techniques to quantify the distribution of bacteria in their soil microhabitats at different spatial scales

    Get PDF
    To address a number of issues of great societal concern at the moment, like the sequestration of carbon, information is direly needed about interactions between soil architecture and microbial dynamics. Unfortunately, soils are extremely complex, heterogeneous systems comprising highly variable and dynamic micro-habitats that have significant impacts on the growth and activity of inhabiting microbiota. Data remain scarce on the influence of soil physical parameters characterizing the pore space on the distribution and diversity of bacteria. In this context, the objective of the research described in this article was to develop a method where X-ray microtomography, to characterize the soil architecture, is combined with fluorescence microscopy to visualize and quantify bacterial distributions in resin-impregnated soil sections. The influence of pore geometry (at a resolution of 13.4â€ŻÎŒm) on the distribution of Pseudomonas fluorescens was analysed at macro- (5.2 mm × 5.2 mm), meso- (1 mm × 1 mm) and microscales (0.2 mm × 0.2 mm) based on an experimental setup simulating different soil architectures. The cell density of P. fluorescens was 5.59 x 107(SE 2.6 x 106) cells g−1 soil in 1–2 mm and 5.84 x 107(SE 2.4 x 106) cells g−1 in 2–4 mm size aggregates soil. Solid-pore interfaces influenced bacterial distribution at micro- and macroscale, whereas the effect of soil porosity on bacterial distribution varied according to three observation scales in different soil architectures. The influence of soil porosity on the distribution of bacteria in different soil architectures was observed mainly at the macroscale, relative to micro- and mesoscales. Experimental data suggest that the effect of pore geometry on the distribution of bacteria varied with the spatial scale, thus highlighting the need to consider an “appropriate spatial scale” to understand the factors that regulate the distribution of microbial communities in soils. The results obtained to date also indicate that the proposed method is a significant step towards a full mechanistic understanding of microbial dynamics in structured soils

    Influence of soil structure on the spread of <i>Pseudomonas fluorescens</i> in soil at microscale

    Get PDF
    For over a half a century, researchers have been aware of the fact that the physical and chemical characteristics of microenvironments in soils strongly influence the activity, growth, and metabolism of microorganisms. However, many aspects of the effect of soil physical characteristics, such as the pore geometry, remain poorly understood. Therefore, the objective of the present research was to determine the influence of soil pore characteristics on the spread of bacteria, observed at the scale relevant to microbes. Pseudomonas fluorescens was introduced in columns filled with 1–2 mm soil aggregates, packed at different bulk densities.. Soil microcosms were scanned at 10.87 Όm voxel resolution using X‐ray computed tomography (CT) to characterize the geometry of pores. Thin sections were prepared to determine the spread and colonization of bacteria. The results showed that average bacterial cell density was 174 cells mm−2 in soil with bulk density of 1.3 g cm−3 and 99 cells mm−2 in soil with bulk density of 1.5 g cm−3. Soil porosity and solid‐pore interfaces influence the spread of bacteria and their colonization of the pore space at lower bulk density, resulting in relatively higher bacterial densities in larger pore spaces. The study also demonstrates that thin sectioning of resin impregnated soil samples can be combined with X‐ray CT to visualize bacterial colonization of a 3D pore volume. This research therefore represents a significant step towards understanding how environmental change and soil management impact bacterial diversity in soils

    RĂ€umlich-zeitliche Charakterisierung mikrobieller Gemeinschaften im Wurzelraum eines Nassreisbodens

    Get PDF
    Die lokal begrenzte VerfĂŒgbarkeit von Sauerstoff im anoxischen Wurzelraum von Nassreisböden induziert gegensĂ€tzliche physiko-chemische Rahmenbedingungen, deren Einfluss auf die rĂ€umlich-zeitliche Dynamik mikrobieller Populationen untersucht wurde. In einem Rhizotronexperiment wurden wĂ€hrend einer Anbauphase von Nassreis (Oryza sativa L.) Bodenproben aus unterschiedlichen Bereichen im Wurzelraum entnommen, die mit Hilfe der molekularbio-logischen Methoden PCR-DGGE und CARD-FISH ausgewertet wurden. Die auf domĂ€nenspezifischer Ebene untersuchten mikrobiellen Gemeinschaften wiesen fĂŒr die beprobten Bereiche deutliche Unterschiede hinsichtlich ihrer Struktur sowie ihrer Individuenzahl auf. Neben der VerfĂŒgbarkeit von Sauerstoff erwies sich die variierende WurzelaktivitĂ€t im Verlauf der Anbauphase als entscheidender Faktor fĂŒr die Ausbildung einer heterogenen Verteilung mikrobieller Habitate im Wurzelraum von Nassreis

    Der Einfluss von Reisstrohmanagement-Praktiken auf mikrobielle Prozesse in chinesischen Reisböden

    Get PDF
    Das Verbrennen von Reisstroh ist in China eine der gĂ€ngigen Reisstrohmanagement-Praktiken, welche neben den Verlusten von NĂ€hrstoffen auch zu Umweltproblemen, wie der Emission von Treibhausgasen und der Produktion von Feinstaub fĂŒhrt. Eine Alternative zur Verbrennung ist das Einbringen des anfallenden Strohs in den Boden. Mit einem Mikrokosmenexperiment konnte der Einfluss der verschiedenen Reisstrohapplikationen auf die AktivitĂ€ten unterschiedlicher mikrobieller Enzyme wĂ€hrend der Vegetationsperiode im Nassreisanbau gezeigt werden. ZusĂ€tzlich wurden die Beziehungen zwischen der Pflanze, dem Stroh, bzw. der Strohasche, einerseits und der Produktion von Kohlendioxid und Methan sowie dem pH und dem Redoxpotential andererseits aufgezeigt

    Bewirtschaftungsinduzierte PopulationsverÀnderungen von Archaeen in Paddy Soils

    Get PDF
    Die Produktion des Treibhausgases Methan durch Archaeen im Nassfeldanbau von Reis ist von großer Relevanz fĂŒr das Weltklima. In einem Mikrokosmenexperiment wurden die Bewirtschaftungsphasen im Anbau von Nassreis simuliert und die Populationsdynamik der Archaeen in drei unterschiedlichen Reisböden untersucht. Die molekularbiologische Analyse ausgesuchter BewirtschaftungszustĂ€nde (flooded und drained) mit Hilfe von DGGE zeigte deutliche Populationsshifts der Archaeen. Chemische und strukturelle VerĂ€nderungen des Bodens wurden ebenfalls beobachtet

    Monitoring des Wurzelraumes von Paddy Soils mit Hilfe von Rhizotronen und digitaler Bildanalyse

    Get PDF
    Chemische Eigenschaften im Wurzelraum von Nassreisböden Paddy Soils) werden signifikant durch die AktivitĂ€t der Reiswurzeln beeinflusst. Die partielle Freisetzung des zuvor ĂŒber Aerenchyme zu den Wurzeln transportierten Sauerstoffs fĂŒhrt in der RhizosphĂ€re unter anoxischen Bedingungen zur Entstehung rĂ€umlicher Redoxgradienten. In einem Rhizotron-Experiment wurde die Entwicklung des Wurzelraumes eines Paddy Soils dokumentiert. WĂ€hrend einer Anbauphase von Nassreis (Oryza sativa L.) wurden hierfĂŒr tĂ€glich Rhizotron-Scans erstellt, die mit Hilfe digitaler Bildanalysemethoden ausgewertet wurden. PrĂ€gnant gefĂ€rbte reduzierte und oxidierte Bereiche im Wurzelraum wurden mit Farbschwellwerten detektiert und in Falschfarben diskret dargestellt. Über die Quantifizierung der detektierten Bereiche konnte die Dynamik reduzierter und oxidierter FlĂ€chen wĂ€hrend der Anbauphase visualisiert und analysiert werden

    Molekularbiologische Charakterisierung von Pilzen in Paddy Soils

    Get PDF
    Pilze haben in Reisböden (Paddy Soils) eine große Bedeutung fĂŒr den Abbau von Reis-stroh. Ihre AktivitĂ€t und DiversitĂ€t wird dabei im Wesentlichen durch die sich im Laufe einer Reisanbauphase Ă€ndernden Feuchte-zustĂ€nde beeinflusst. Da durch Verfahren der Kultivierung nur ein geringer Teil der im Boden vorhandenen Pilze erfasst werden kann, wurden moleku-larbiologische Methoden eingesetzt, um die Pilzgemeinschaften in drei unterschiedlichen Paddy Soils SĂŒd-Ost Chinas zu untersuchen. Mit diesem Ansatz konnten Populationsshifts aufgezeigt werden, die sowohl durch die Austrocknung von Paddy Soils als auch durch unterschiedliche Reisstrohapplikatio-nen hervorgerufen wurden

    Abbau von Reisstroh durch Pilzgemeinschaften aus Paddy Soils

    Get PDF
    Pilze haben in Reisböden (Paddy Soils) einen entscheidenden Einfluss auf den Ab-bau von Reisstroh. Allerdings unterliegt ihre AktivitÀt direkt den wechselnden Bewirt-schaftungszustÀnden des Nassfeldanbaus von Reis. In dieser Arbeit wurden Pilzisolate aus unter-schiedlichen Paddy Soils hinsichtlich ihres Abbaupotentials untersucht. In einem Inku-bationsversuch (20 Wochen) zeigten die aus-gewÀhlten Isolate unterschiedliche Besied-lungsstrategien und AktivitÀten bei der Zer-setzung von Reisstroh

    Control of Pore Geometry in Soil Microcosms and Its Effect on the Growth and Spread of Pseudomonas and Bacillus sp.

    Get PDF
    Simplified experimental systems, often referred to as microcosms, have played a central role in the development of modern ecological thinking on issues ranging from competitive exclusion to examination of spatial resources and competition mechanisms, with important model-driven insights to the field. It is widely recognized that soil architecture is the key driver of biological and physical processes underpinning ecosystem services, and the role of soil architecture and soil physical conditions is receiving growing interest. The difficulty to capture the architectural heterogeneity in microcosms means that we typically disrupt physical architecture when collecting soils. We then use surrogate measures of soil architecture such as aggregate size distribution and bulk-density, in an attempt to recreate conditions encountered in the field. These bulk-measures are too crude and do not describe the heterogeneity at microscopic scales where microorganisms operate. In the current paper we therefore ask the following questions: (i) To what extent can we control the pore geometry at microscopic scales in microcosm studies through manipulation of common variables such as density and aggregate size?; (ii) What is the effect of pore geometry on the growth and spread dynamics of bacteria following introduction into soil? To answer these questions, we focus on Pseudomonas sp. and Bacillus sp. We study the growth of populations introduced in replicated microcosms packed at densities ranging from 1.2 to 1.6 g cm−3, as well as packed with different aggregate sizes at identical bulk-density. We use X-ray CT and show how pore geometrical properties at microbial scales such as connectivity and solid-pore interface area, are affected by the way we prepare microcosms. At a bulk-density of 1.6 g cm−3 the average number of Pseudomonas was 63% lower than at a bulk-density of 1.3 g cm−3. For Bacillus this reduction was 66%. Depending on the physical conditions, bacteria in half the samples took between 1.62 and 9.22 days to spread 1.5 cm. Bacillus did spread faster than Pseudomonas and both did spread faster at a lower bulk-density. Our results highlight the importance that soil physical properties be considered in greater detail in soil microbiological studies than is currently the case
    corecore