461 research outputs found

    The absence of myocardial calcium-independent phospholipase a2γ results in impaired prostaglandin e2 production and decreased survival in mice with acute trypanosoma cruzi infection

    Get PDF
    Cardiomyopathy is a serious complication of Chagas' disease, caused by the protozoan parasite Trypanosoma cruzi. The parasite often infects cardiac myocytes, causing the release of inflammatory mediators, including eicosanoids. A recent study from our laboratory demonstrated that calcium-independent phospholipase A(2)γ (iPLA(2)γ) accounts for the majority of PLA(2) activity in rabbit ventricular myocytes and is responsible for arachidonic acid (AA) and prostaglandin E(2) (PGE(2)) release. Thus, we hypothesized that cardiac iPLA(2)γ contributes to eicosanoid production in T. cruzi infection. Inhibition of the isoform iPLA(2)γ or iPLA(2)β, with the R or S enantiomer of bromoenol lactone (BEL), respectively, demonstrated that iPLA(2)γ is the predominant isoform in immortalized mouse cardiac myocytes (HL-1 cells). Stimulation of HL-1 cells with thrombin, a serine protease associated with microthrombus formation in Chagas' disease and a known activator of iPLA(2), increased AA and PGE(2) release, accompanied by platelet-activating factor (PAF) production. Similarly, T. cruzi infection resulted in increased AA and PGE(2) release over time that was inhibited by pretreatment with (R)-BEL. Further, T. cruzi-infected iPLA(2)γ-knockout (KO) mice had lower survival rates and increased tissue parasitism compared to wild-type (WT) mice, suggesting that iPLA(2)γ-KO mice were more susceptible to infection than WT mice. A significant increase in iPLA(2) activity was observed in WT mice following infection, whereas iPLA(2)γ-KO mice showed no alteration in cardiac iPLA(2) activity and produced less PGE(2). In summary, these studies demonstrate that T. cruzi infection activates cardiac myocyte iPLA(2)γ, resulting in increased AA and PGE(2) release, mediators that may be essential for host survival during acute infection. Thus, these studies suggest that iPLA(2)γ plays a cardioprotective role during the acute stage of Chagas' disease

    Use of Leishmania major parasites expressing a recombinant Trypanosoma cruzi antigen as live vaccines against Chagas disease

    Get PDF
    INTRODUCTION: METHODS: We generated recombinant RESULTS: We demonstrate that mice inoculated with these recombinant TS-expressing DISCUSSION: Altogether, these data indicate tha

    Genetic Studies of Sulfadiazine-resistant and Methionine-requiring \u3cem\u3eNeisseria\u3c/em\u3e Isolated From Clinical Material

    Get PDF
    Deoxyribonucleate (DNA) preparations were extracted from Neisseria meningitidis (four isolates from spinal fluid and blood) and N. gonorrhoeae strains, all of which were resistant to sulfadiazine upon primary isolation. These DNA preparations, together with others from in vitro mutants of N. meningitidis and N. perflava, were examined in transformation tests by using as recipient a drug-susceptible strain of N. meningitidis (Ne 15 Sul-s Met+) which was able to grow in a methionine-free defined medium. The sulfadiazine resistance typical of each donor was introduced into the uniform constitution of this recipient. Production of p-aminobenzoic acid was not significantly altered thereby. Transformants elicited by DNA from the N. meningitidis clinical isolates were resistant to at least 200 μg of sulfadiazine/ml, and did not show a requirement for methionine (Sul-r Met+). DNA from six strains of N. gonorrhoeae, which were isolated during the period of therapeutic use of sulfonamides, conveyed lower degrees of resistance and, invariably, a concurrent methionine requirement (Sul-r/Met−). The requirement of these transformants, and that of in vitro mutants selected on sulfadiazine-agar, was satisfied by methionine, but not by vitamin B12, homocysteine, cystathionine, homoserine, or cysteine. Sul-r Met+ and Sul-r/Met− loci could coexist in the same genome, but were segregated during transformation. On the other hand, the dual Sul-r/Met− properties were not separated by recombination, but were eliminated together. DNA from various Sul-r/Met− clones tested against recipients having nonidentical Sul-r/Met− mutant sites yielded Sul-s Met+ transformants. The met locus involved is genetically complex, and will be a valuable tool for studies of genetic fine structure of members of Neisseria, and of genetic homology between species

    Celio (\u2705), Orkand (\u2707) Named Up and Coming Leaders

    Get PDF
    BackgroundAlthough auditory verbal hallucinations (AVH) are a core symptom of schizophrenia, they also occur in non-psychotic individuals, in the absence of other psychotic, affective, cognitive and negative symptoms. AVH have been hypothesized to result from deviant integration of inferior frontal, parahippocampal and superior temporal brain areas. However, a direct link between dysfunctional connectivity and AVH has not yet been established. To determine whether hallucinations are indeed related to aberrant connectivity, AVH should be studied in isolation, for example in non-psychotic individuals with AVH.MethodResting-state connectivity was investigated in 25 non-psychotic subjects with AVH and 25 matched control subjects using seed regression analysis with the (1) left and (2) right inferior frontal, (3) left and (4) right superior temporal and (5) left parahippocampal areas as the seed regions. To correct for cardiorespiratory (CR) pulsatility rhythms in the functional magnetic resonance imaging (fMRI) data, heartbeat and respiration were monitored during scanning and the fMRI data were corrected for these rhythms using the image-based method for retrospective correction of physiological motion effects RETROICOR.ResultsIn comparison with the control group, non-psychotic individuals with AVH showed increased connectivity between the left and the right superior temporal regions and also between the left parahippocampal region and the left inferior frontal gyrus. Moreover, this group did not show a negative correlation between the left superior temporal region and the right inferior frontal region, as was observed in the healthy control group.ConclusionsAberrant connectivity of frontal, parahippocampal and superior temporal brain areas can be specifically related to the predisposition to hallucinate in the auditory domain.</jats:sec

    Exploring the Partonic Structure of Hadrons through the Drell-Yan Process

    Full text link
    The Drell-Yan process is a standard tool for probing the partonic structure of hadrons. Since the process proceeds through a quark-antiquark annihilation, Drell-Yan scattering possesses a unique ability to selectively probe sea distributions. This review examines the application of Drell-Yan scattering to elucidating the flavor asymmetry of the nucleon's sea and nuclear modifications to the sea quark distributions in unpolarized scattering. Polarized beams and targets add an exciting new dimension to Drell-Yan scattering. In particular, the two initial-state hadrons give Drell-Yan sensitivity to chirally-odd transversity distributions.Comment: 23 pages, 9 figures, to appear in J. Phys. G, resubmission corrects typographical error

    Functional classification of memory CD8(+) T cells by CX(3)CR1 expression

    No full text
    Localization of memory CD8(+) T cells to lymphoid or peripheral tissues is believed to correlate with proliferative capacity or effector function. Here we demonstrate that the fractalkine-receptor/CX(3)CR1 distinguishes memory CD8(+) T cells with cytotoxic effector function from those with proliferative capacity, independent of tissue-homing properties. CX(3)CR1-based transcriptome and proteome-profiling defines a core signature of memory CD8(+) T cells with effector function. We find CD62L(hi)CX(3)CR1(+) memory T cells that reside within lymph nodes. This population shows distinct migration patterns and positioning in proximity to pathogen entry sites. Virus-specific CX(3)CR1(+) memory CD8(+) T cells are scarce during chronic infection in humans and mice but increase when infection is controlled spontaneously or by therapeutic intervention. This CX3CR1-based functional classification will help to resolve the principles of protective CD8(+) T-cell memory

    Interoperable atlases of the human brain

    Get PDF
    International audienceThe last two decades have seen an unprecedented development of human brain mapping approaches at various spatial and temporal scales. Together, these have provided a large fundus of information on many different as-pects of the human brain including micro-and macrostructural segregation, regional specialization of function, connectivity, and temporal dynamics. Atlases are central in order to integrate such diverse information in a topo-graphically meaningful way. It is noteworthy, that the brain mapping field has been developed along several major lines such as structure vs. function, postmortem vs. in vivo, individual features of the brain vs. population-based aspects, or slow vs. fast dynamics. In order to understand human brain organization, however, it seems inevitable that these different lines are integrated and combined into a multimodal human brain model. To this aim, we held a workshop to determine the constraints of a multi-modal human brain model that are needed to enable (i) an integration of different spatial and temporal scales and data modalities into a common reference system, and (ii) efficient data exchange and analysis. As detailed in this report, to arrive at fully interoperable atlases of the human brain will still require much work at the frontiers of data acquisition, analysis, and represen-tation. Among them, the latter may provide the most challenging task, in particular when it comes to representing features of vastly different scales of space, time and abstraction. The potential benefits of such endeavor, however, clearly outweigh the problems, as only such kind of multi-modal human brain atlas may provide a starting point from which the complex relationships between structure, function, and connectivity may be explored

    Spintronics: Fundamentals and applications

    Get PDF
    Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes from the published versio
    corecore