160 research outputs found

    FRBNY Email Eichner to Brodows re Merrill Lynch Overnight Info

    Get PDF

    Searching for the Kuhnian moment : the Black-Scholes-Merton formula and the evolution of modern finance theory

    Get PDF
    The Black-Scholes-Merton formula has been put to widespread use by options traders because it provides a means of calculating the theoretically 'correct' price of stock options. Traders can therefore see whether the market price of stock options undervalues or overvalues them compared with their hypothetical Black-Scholes-Merton price, before choosing to buy or sell options accordingly. As a consequence of this close relationship between options pricing theory and options pricing practice, a strong performativity loop was activated, whereby market prices quickly converged on the hypothetical Black-Scholes-Merton prices following the dissemination of the formula. The theory has therefore had significant real-world effects, but how should we characterize the initial instinct to derive the theory from a philosophy of science perspective? The two books under review suggest that a Kuhnian reading of the advancement of scientific knowledge might well be the most appropriate. But, on closer inspection, it becomes clear that the publication of the Black-Scholes-Merton formula should not be seen as a Kuhnian moment with paradigm-shaping attributes. It is shown that, at most, the formula acts as an important exemplar which, via its use in the training of options pricing theorists and options pricing practitioners, reinforces the entrenchment of finance theory within the orthodox economics worldview

    Effects of deceptive running speed on physiology, perceptual responses, and performance during sprint-distance triathlon

    Get PDF
    Objective This study examined the effects of speed deception on performance, physiological and perceptual responses, and pacing during sprint-distance triathlon running. Methods Eight competitive triathletes completed three simulated sprint-distance triathlons (0.75 km swim, 20 km bike, 5 km run) in a randomised order, with swimming and cycling sections replicating baseline triathlon performance. During the first 1.66 km of the run participants maintained an imposed speed, completing the remaining 3.33 km as quickly as possible. Although participants were informed that initially prescribed running speed would reflect baseline performance, this was true during only one trial (Tri-Run100%). As such, other trials were either 3% faster (Tri-Run103%), or 3% slower (Tri-Run97%) than baseline during this initial period. Results Performance during Tri-Run103% (1346 ± 108 s) was likely faster than Tri-Run97% (1371 ± 108 s), and possibly faster than Tri-Run100% (1360 ± 125 s), with these differences likely to be competitively meaningful. The first 1.66 km of Tri-Run103% induced greater physiological strain compared to other conditions, whilst perceptual responses were not significantly different between trials. Conclusions It appears that even during ‘all-out’ triathlon running, athletes maintain some form of ‘reserve’ capacity which can be accessed by deception. This suggests that expectations and beliefs have a practically meaningful effect on pacing and performance during triathlon, although it is apparent that an individual’s conscious intentions are secondary to the brains sensitivity to potentially harmful levels of physiological and perceptual strain

    Photodynamic Inactivation of Bacteria in Ionic Environments Using the Photosensitizer SAPYR and the Chelator Citrate

    Get PDF
    Many studies show that photodynamic inactivation (PDI) is a powerful tool for the fight against pathogenic, multiresistant bacteria and the closing of hygiene gaps. However, PDI studies have been frequently performed under standardized in vitro conditions comprising artificial laboratory settings. Under real-life conditions, however, PDI encounters substances like ions, proteins, amino acids and fatty acids, potentially hampering the efficacy of PDI to an unpredictable extent. Thus, we investigated PDI with the phenalene-1-one-based photosensitizer SAPYR against Escherichia coli and Staphylococcus aureus in the presence of calcium or magnesium ions, which are ubiquitous in potential fields of PDI applications like in tap water or on tissue surfaces. The addition of citrate should elucidate the potential as a chelator. The results indicate that PDI is clearly affected by such ubiquitous ions depending on its concentration and the type of bacteria. The application of citrate enhanced PDI, especially for Gram-negative bacteria at certain ionic concentrations (e.g. CaCl2 or MgCl2: 7.5 to 75 mmol L−1). Citrate also improved PDI efficacy in tap water (especially for Gram-negative bacteria) and synthetic sweat solution (especially for Gram-positive bacteria). In conclusion, the use of chelating agents like citrate may facilitate the application of PDI under real-life conditions

    SBMLsqueezer 2: context-sensitive creation of kinetic equations in biochemical networks

    Get PDF
    BACKGROUND: The size and complexity of published biochemical network reconstructions are steadily increasing, expanding the potential scale of derived computational models. However, the construction of large biochemical network models is a laborious and error-prone task. Automated methods have simplified the network reconstruction process, but building kinetic models for these systems is still a manually intensive task. Appropriate kinetic equations, based upon reaction rate laws, must be constructed and parameterized for each reaction. The complex test-and-evaluation cycles that can be involved during kinetic model construction would thus benefit from automated methods for rate law assignment. RESULTS: We present a high-throughput algorithm to automatically suggest and create suitable rate laws based upon reaction type according to several criteria. The criteria for choices made by the algorithm can be influenced in order to assign the desired type of rate law to each reaction. This algorithm is implemented in the software package SBMLsqueezer 2. In addition, this program contains an integrated connection to the kinetics database SABIO-RK to obtain experimentally-derived rate laws when desired. CONCLUSIONS: The described approach fills a heretofore absent niche in workflows for large-scale biochemical kinetic model construction. In several applications the algorithm has already been demonstrated to be useful and scalable. SBMLsqueezer is platform independent and can be used as a stand-alone package, as an integrated plugin, or through a web interface, enabling flexible solutions and use-case scenarios. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12918-015-0212-9) contains supplementary material, which is available to authorized users
    • …
    corecore