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Abstract  

Objective: This study examined the effects of speed deception on performance, physiological 

and perceptual responses, and pacing during sprint-distance triathlon running. Methods: Eight 

competitive triathletes completed three simulated sprint-distance triathlons (0.75 km swim, 20 

km bike, 5 km run) in a randomised order, with swimming and cycling sections replicating 

baseline triathlon performance. During the first 1.66 km of the run participants maintained an 

imposed speed, completing the remaining 3.33 km as quickly as possible. Although 

participants were informed that initially prescribed running speed would reflect baseline 

performance, this was true during only one trial (Tri-Run100%). As such, other trials were 

either 3% faster (Tri-Run103%), or 3% slower (Tri-Run97%) than baseline during this initial 

period. Results: Performance during Tri-Run103% (1346 ± 108 s) was likely faster than Tri-

Run97% (1371 ± 108 s), and possibly faster than Tri-Run100% (1360 ± 125 s), with these 

differences likely to be competitively meaningful. The first 1.66 km of Tri-Run103% induced 

greater physiological strain compared to other conditions, whilst perceptual responses were 

not significantly different between trials. Conclusions: It appears that even during ‘all-out’ 

triathlon running, athletes maintain some form of ‘reserve’ capacity which can be accessed by 

deception. This suggests that expectations and beliefs have a practically meaningful effect on 

pacing and performance during triathlon, although it is apparent that an individual’s conscious 

intentions are secondary to the brains sensitivity to potentially harmful levels of physiological 

and perceptual strain.   

 

Keywords: Perceived exertion, affect, multisport, teleoanticipation, central governor, 

deception 
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1. Introduction 

A key aspect of successful endurance performance is the adoption of an appropriate and 

effective pacing strategy, whereby an individual’s desire to achieve the fastest possible 

finishing time is balanced against the avoidance of a meaningful slowdown, premature 

exhaustion or potentially damaging homeostatic disturbances [1-3]. This pacing strategy is the 

result of an ongoing ‘internal negotiation’ process within the brain which relies on an 

experientially developed ‘template’ of how work-rate, effort and perceived exertion levels are 

expected to develop throughout the event [2,4]. As the primary function of this process is 

believed to be protection from harm, it is thought to incorporate a substantial ‘threshold’ or 

‘reserve’ capacity so that an athlete’s absolute physiological capacity is never fully reached 

[5-9]. Allowing athletes to safely sustain work-rates beyond this protective limit (i.e. without 

succumbing to physiological damage or harm) therefore provides a potential means with 

which to improve endurance performance [7].  

A number of studies have attempted to illicit performance improvements in this manner by 

providing deceptive feedback to manipulate athletes’ expectations or beliefs [7,8,10-13]. 

Micklewright and colleagues [7] examined the effects of providing deceptive feedback during 

the first two of three 20 km cycling time trials, which conditioned participants to believe they 

could sustain speeds 5% higher than actual values. The provision of accurate feedback during 

the third time trial had no significant effect on overall performance time, speed or power 

output, although a far more aggressive pacing strategy was adopted by participants during the 

first 5 km. Whilst this suggests that manipulated performance beliefs can influence an 

individual’s pace regulation, it also illustrates the brain’s limited tolerance to mismatches 

between actual and anticipated levels of effort or exertion. Thus, it seems that any access to 

the physiological ‘reserve’ has a relatively robust upper limit, which is always kept below an 

individual’s true task-specific maximum capacity [14]. Aggressive work-rates which exceed 

this limit are therefore unlikely to be sustained for long enough to benefit overall 

performance, regardless of an individual’s desire to do so. As such, Stone et al. [8] have 
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demonstrated significant improvements in time trial performance when exposing cyclists to a 

less aggressive feedback deception than that utilised by Micklewright et al. [7]. During this 

study participants competed against what they believed to be their previous baseline time trial 

performance, unaware that this actually corresponded to 102% of their mean baseline power 

output. These findings underline the limited tolerance of athletes to performance-enhancing 

levels of deception, with the authors suggesting that the magnitude of this limit may closely 

relate to values of typical athlete variability between performances. However, whilst the 

significant performance improvements observed by Stone et al. [8] were also deemed to be 

competitively meaningful, the 4 km cycling time trial is a relatively short single-discipline 

endurance event (~ 6 mins). Such findings may therefore have limited relevance to longer 

distance multi-disciplinary endurance events such as triathlon (~1 hr to 17hrs for sprint-

distance to Ironman, respectively), due to the relative differences in exercise intensity and 

physiological stress imposed on athletes [15,16]. Furthermore, there is considered to be more 

uncertainty regarding the endpoint and appropriateness of pacing during longer-distance 

endurance events which, in turn, leads athletes to maintain a greater ‘reserve’ capacity [9]. 

The triathlon may therefore provide greater opportunity for deception to improve performance 

as a result of access to the physiological ‘reserve’, compared to those shorter event distances 

studied previously.  

Stone and colleagues [8] have also acknowledged the limited scope of using perceived 

exertion as the sole overarching measure of an individual’s perception of exercise intensity. 

As such, they suggest that other cognitive processes, such as affective response, warrant 

examination during self-paced performance tasks. Indeed, the recent findings of Renfree et al. 

[17] suggest affect may be more important than perceived exertion in the regulation and 

tolerance of aggressive pacing strategies during endurance performance. Furthermore, it has 

long been proposed that to better understand pace regulation, perceived exertion should not be 

considered as one global measure, rather, each of those afferent signals considered influential 

during performance (e.g. muscular and thermal strain, metabolic flux, breathlessness) should 
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be examined as individual mediators which form part of the centrally integrated pacing 

process [18,19].  

To our knowledge, the effect of belief manipulation on performance, physiological and 

perceptual responses, and pacing, is yet to be examined during self-paced multi-disciplinary 

endurance events such as triathlon, whereby residual fatigue across consecutive disciplines 

can have a unique and detrimental effect on pace regulation [20]. This is despite a number of 

studies highlighting the importance of pacing strategies adopted by triathletes, particularly 

during the running phase of competition which has a greater influence on success compared to 

the preceding swim and cycle [21-23]. Furthermore, as it is suggested that triathletes may 

optimise running performance by avoiding the aggressive pacing strategies commonly 

adopted during competition [22,23], it is of interest to examine whether such pacing changes 

and subsequent performance benefits can be elicited using deceptive methods. Therefore, the 

purpose of this study was to examine whether deceptively manipulating speed during the 

initial section of a sprint-distance triathlon run influenced overall performance, physiological 

and perceptual responses, and the subsequent pacing strategy adopted.  

2. Methods 

2.1. Participants  

Eight non-elite, competitive triathletes (1 female) volunteered to participate in this study with 

a mean (± SD) age, body mass, stature and maximum oxygen uptake (V̇ O2max) of 40.5 ± 3.8 

yrs, 76.4 ± 12.2 kg, 1.75 ± 0.08 m and 53.5 ± 6.7 ml·kg
-1

·min
-1

, respectively. Participants had 

been competing in triathlons for at least 12 months and were in their off season at the time of 

the study. The groups training during the study period averaged 1.7 h·wk
−1

 swimming, 2.3 

h·wk
−1

 cycling, 2.2 h·wk
−1

 running and 1.3 h·wk
−1

 strength and conditioning. Prior to any 

data collection a medical history questionnaire and written, informed consent were obtained 

from all participants. At this preliminary stage participants were misinformed that the purpose 

of the study was to examine the reliability and validity of simulated sprint-distance triathlon 

performance, and associated physiological and perceptual responses. In accordance with 
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previous deceptive research [8,10] all participants were fully debriefed about the true nature 

of the study upon completion of all trials. All study procedures were approved by the 

institutional ethics committee. Throughout the study period participants were allowed to 

maintain their usual training regime but were instructed to avoid training in the 24 h prior to 

each trial. As such, training was recorded daily by participants to ensure consistency across 

trials. Furthermore, participants replicated dietary and fluid intake in the 24 h period 

preceding each trial, using a standardized recording sheet and serving as their own control. 

2.2. Procedure and apparatus 

Each participant completed six testing sessions in total, the first of which was an incremental 

treadmill assessment to determine V̇ O2peak. This began with a 5 min warm-up at 7 km·h
-1

, with 

speed subsequently increasing by 1 km·h
-1

 each minute until volitional exhaustion. The 

methods outlined by Sultana et al. [24] were subsequently used to establish V̇ O2peak. During 

their second session participants completed a field-based sprint-distance triathlon (750 m 

swim, 20 km cycle and 5 km run) to establish baseline performance within each discipline, 

utilising the same course and measurement methods as described previously [20]. The third 

preliminary session familiarised participants with the protocol and measurement methods of 

subsequent experimental trials, with each individual completing a practice simulated triathlon 

session (750 m swim, 10 km bike, 2.5 km run). These reduced cycle and run distances were 

implemented in order to minimise the physiological strain of the familiarisation period. 

Indeed, we have previously demonstrated that incorporating reduced distances during 

simulated triathlon provides adequate familiarisation to athletes [25], particularly if a ‘race-

pace’ effort over the sprint-distance format has been completed in the preliminary testing 

period. During the familiarisation trial, swim pace, cycling power output (and cadence), and 

speed during the first 1.66 km of the run were fixed to replicate average equivalents measured 

during field-based triathlon performance. For the remainder of the run participants were 

encouraged to utilise the treadmill controls to become accustomed with the frequent selection 

and adjustment of their running speed, in order to more closely replicate the dynamic pacing 
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of competitive field-based performance. This trial also familiarised participants with the 

methods and scheduling of perceptual and physiological measurement that would be adopted 

during subsequent experimental trials. 

Following preliminary testing participants completed three separate simulated sprint-distance 

triathlons (0.75 km swim, 20 km bike, 5 km run). These trials were performed at the same 

time of day and were separated by a minimum of 3 days. The duration and work rate imposed 

during swimming and cycling was again fixed for each participant to replicate their baseline 

triathlon performance, with the time taken to complete first and second transitions (225 ± 20 s 

and 204 ± 37 s, respectively) comparable to previous studies of simulated triathlon 

performance [2,25,26]. At the end of the second transition of each trial, participants mounted 

the treadmill and were instructed to maintain the prescribed running speed for the first 1.66 

km, having been misinformed that this speed would always equate to their baseline triathlon 

performance. On reaching 1.66 km participants were instructed to complete the remainder of 

each trial in as short a time as possible, as during competition. As such, participants were free 

to adjust their pace as often as required, with a single push of the treadmill controls equating 

to a 0.1 km∙h
-1

 increase or decrease in belt speed. The only feedback given to participants 

throughout each run was to confirm distance completed. This was provided at 1 km intervals 

and also following the measurement of physiological and perceptual responses at 1.66 and 

3.33 km. Based on participant feedback during familiarisation, the frequency of distance 

feedback was increased to 200 m during the final kilometre of each run. Ad libitum intake of 

fluid and carbohydrate gel was allowed during the cycling leg of the first experimental 

triathlon, with the volume and timing of this intake replicated during the second and third 

trials.  

Initially imposed treadmill speed was an accurate reflection of baseline performance during 

only one trial (Tri-Run100%). During the other two trials initial treadmill speed was either 3% 

faster (Tri-Run103%), or 3% slower (Tri-Run97%) than the mean running speed of baseline 

triathlon performance. Participants completed each deception condition in a randomised order 
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to minimise the effects of familiarisation, training and fatigue between trials. The magnitude 

of deception selected only marginally exceeds the 95% confidence interval (CI) for the 

coefficient of variation (CV) we have previously established for run performance during 

simulated sprint-distance triathlon (CV = 1.3%; 95% CI = 0.8 – 2.9%) [25]. This would 

therefore allow a worthwhile change in performance to be imposed, whilst also minimising 

the likelihood of participants noticing the manipulation of running speed between trials. The 

imposition of speed during the first 1.66 km of the run was deemed appropriate as this period 

appears to be particularly important in the evolution of pacing strategy during sprint-distance 

triathlon [20] and standalone 5 km road races [27]. Furthermore, the time required to 

complete this initial distance corresponded to the 6-8 minute period of specific physiological 

adaptation experienced by competitive triathletes during the cycle to run transition [28].  

During all laboratory trials, swimming was performed in a temperature-controlled flume 

(Fastlane, Endless Pools, UK; water temperature ~23.4°C), with all cycling and running 

completed in an adjacent environmentally controlled room (temperature ~18°C; relative 

humidity ~48%). Electric fans provided a consistent level of additional air ventilation 

throughout all trials. Cycling was completed on an electromagnetically braked ergometer 

(SRM; Jülich, Welldorf, Germany) fitted with participants’ own pedals and adjusted to 

replicate the set up of each athlete’s own bicycle. Running was performed on a motorised 

treadmill at a fixed gradient of 1% (HPCosmos, Traunstein, Germany). All breath-by-breath 

measurements of oxygen uptake (V̇ O2), respiratory exchange ratio (RER) and ventilation (V̇ E) 

were recorded continuously using an automated, online metabolic cart (Cortex Metalyzer, 

Leipzig, Germany). The gas analyser of this system was calibrated prior to each trial using 

ambient air and reference gases of known concentration (16.07% O2, 4.05% CO2), whilst 

volume was calibrated using a 3 L gas syringe. Heart rate (HR) was measured with a Polar 

Heart Rate Monitor (RS400, Polar Electro Kempele, Finland) which was integrated with the 

Cortex system to continuously record data.  

2.2.1. Physiological responses 
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Before each triathlon trial participants fitted a transmitter belt under their triathlon suit to 

allow heart rate to be recorded. At the end of the cycle-to-run transition participants were 

equipped with the online gas analyser. Average values for all respiratory and heart rate data 

were obtained for the final 500 m of each 1.66 km run section completed (1.16-1.66, 2.73-

3.33 and 4.5-5 km). Fingertip capillary blood was analysed for blood lactate concentration 

([BLa
-
]; Lactate Pro, Kodak, Japan) at 1.66 and 5 km. 

2.2.2. Perceptual responses 

Verbal ratings of perceived muscular pain, effort, breathlessness, affect and thermal 

discomfort were obtained from participants, in that order, at 1.66, 3.33 and 5 km of each 

triathlon run. Borg CR-10 scales [29] were used to rate muscular pain, breathlessness and 

thermal discomfort. Rating descriptors were adapted for each scale accordingly (0 = no 

muscular pain, breathlessness or thermal discomfort; 10 = previously experienced worst 

muscular pain, breathlessness or thermal discomfort) and participants were familiarised with 

how to rate their sensations during preliminary trials, as explained by Jameson and Ring [19]. 

The 11-point Feeling Scale was used to quantify the type and level of affect (pleasure or 

displeasure) experienced by participants (+5 = very good; 0 = neutral; -5 = very bad). As 

outlined by Astorino et al. [30], participant understanding of this scale was facilitated by the 

standardised explanatory script developed by Hardy and Rejeski [31]. To measure perceived 

effort a modified 6-20 Borg scale [32] was used, with participants instructed to rate only the 

sensations of psychological effort they were experiencing, ignoring any physical sensations 

they may be aware of. Using a similar modification of the Borg 6-20 scale, Swart et al. [33] 

have established that athletes are able to clearly distinguish between psychological effort and 

physiological sensations when providing such perceptual ratings in this manner.  

2.3. Statistical analysis 

Data were analysed using SPSS for Windows (Version 19, SPSS Inc., Chicago, USA). A one-

way repeated-measures analysis of variance was used to examine differences in run and total 

triathlon completion times between trials. Based on the recommendations of Batterham & 
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Hopkins [34] analysis of running and triathlon performance also included magnitude-based 

inferences, whereby the chance of practically beneficial, trivial or harmful differences 

between conditions was calculated using a published spreadsheet [35]. This required values 

for the smallest worthwhile change in run performance during simulated sprint-distance 

triathlon, which has been established for non-elite, competitive triathletes as ~0.6% [25]. 

A series of two-way within-subjects (run type x run distance) ANOVA’s were conducted to 

analyse main effects of run condition and distance completed using 1.66km split times, mean 

1.66km section speeds, [BLa
-
], HR, V̇ O2, V̇ E, RER, perceived muscular pain, effort, 

breathlessness, affect and thermal discomfort as dependent variables. Repeated measures 

ANOVA’s were used to identify changes in these variables during the course of each trial. If 

the Mauchly test indicated a violation of sphericity then analysis of variance was adjusted 

using the Greenhouse–Geisser correction factor to reduce the likelihood of type I error. Where 

appropriate, Bonferroni-adjusted post-hoc tests were used to identify specific differences 

within and between running trials. 

Pearson’s product-moment correlations were used to determine the strength of relationships 

between performance, physiological and perceptual data during each running trial. Repeated 

measures ANOVA examined any differences in these r coefficients between each running 

condition. As rationalised by Vescovi and McGuigan [36], threshold values for r coefficients 

were set at <0.7 (low or weak), 0.7 – 0.89 (moderate), and >0.9 (high or strong). For all 

statistical procedures the level of significance was set at p<0.05 and adjusted accordingly. All 

data are expressed as means ± standard deviations. 

3. Results 

3.1. Performance measures 

No statistically significant differences were observed between trials in the time taken to 

complete any of the individual triathlon disciplines, including the run (P>0.05). However, 

there was a trend for the fastest run (and overall triathlon) time to be achieved during the Tri-
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Run103% condition, and the slowest run (and overall triathlon) time during the Tri-Run97% 

condition (Table 1).  

Table 1 Mean ± SD overall and isolated performance times during each triathlon trial (n = 8). 

 Swim (s) Cycling (s) Run (s) Overall (s) 

Tri-Run 97% 805 ± 106 2320 ± 157 1371 ± 108 4496 ± 309 

Tri-Run 100% 805 ± 106 2319 ± 157 1360 ± 125 4484 ± 314 

Tri-Run 103% 805 ± 106 2319 ± 156 1346 ± 108 4471 ± 298 

With regard to the practical significance of any differences in running performance, the 

magnitude-based chances that the true effect was a faster/trivial/slower time for Tri-Run103% 

were 77:15:8% (likely faster) versus Tri-Run97%, and 59:28:12% (possibly faster) versus Tri-

Run100%. The chances that the true effect was a faster/trivial/slower times for Tri-Run100% 

versus Tri-Run97% were 64:31:5% (possibly faster). Repeated-measures ANOVA revealed a 

significant main effect on cumulative 1.66km split times for deception condition (F1.005,7.038 = 

1016.9, P<0.001, p
2
 = .99) and run distance (F2.0,14.0 = 9.0, P<0.01, p

2
 = .56), but no 

deception condition × distance interaction (F1.228,8.596 = 0.3, P>0.05, p
2
 = .04). Post-hoc 

analysis revealed systematic differences in split times at 1.66km between all deception 

conditions (424 ± 27, 440 ± 32 and 454 ± 32 s for Tri-Run103%, Tri-Run100% and Tri-Run97%, 

respectively, P ranging from 0.001 to 0.017; Fig. 1). Differences in cumulative split times 

were also evident at 3.33 km between Tri-Run103% and Tri-Run97% (889 ± 68 and 909 ± 65 s, 

respectively, P<0.05). There were no statistically significant differences observed between 

trials in relation to isolated split times for the second and third 1.66 km sections (P>0.05). 

Furthermore, a sustained reduction in speed during Tri-Run103% (P<0.05) was the only 

significant pacing change observed between successive 1.66 km sections of all trials, although 

an increase in running speed was apparent during the final 400 m of all trials (1.8, 2.7 and 

2.3% for Tri-Run97% Tri-Run100% and Tri-Run103%, respectively; Fig. 2).  

3.2. Physiological measures 
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No significant global effects of deception condition were found on HR, V̇ O2, V̇ E or RER 

(P>0.05). However, significant distance effects were revealed for HR (F2.0,14.0 = 5.1, P<0.05, 

p
2
 = .42) and RER (F2.0,14.0 = 26.2, P<0.001, p

2
 = .79), whilst a significant condition × 

distance interaction was found for V̇ O2 (F4.0,28.0 = 4.9, P<0.005, p
2
 = .41). Profiles of 

physiological measures over the course of each running trial, including post-hoc analysis 

outcomes, are presented in Fig. 3. As such, significant condition effects were evident during 

the first 1.66 km for HR, V̇ O2, V̇ E, RER and [BLa
-
] (P<0.05). Pearson’s product-moment 

correlations between physiological measures and distance were similarly weak during all 

trials, with RER demonstrating the strongest association during Tri-Run100% (r = -0.63, 

P<0.01) and Tri-Run103%, (r = -0.48, P<0.05). The collation of data from all trials further 

reinforced RER as the only significant correlate with distance covered (r = -0.44, P<0.01). 

3.3. Perceptual measures 

Profiles of perceptual measures during each running trial, including post-hoc analysis 

outcomes, are presented in Fig. 4. No significant main condition effects or condition × 

distance interactions were found for any perceptual measure (P>0.05). However, significant 

distance effects were revealed for RPE (F2.0,14.0 = 34.4, P<0.001, p
2
 = .83), affect (F2.0,14.0 = 

30.6, P<0.001, p
2
 = .81), muscular pain (F2.0,14.0 = 23.5, P<0.001, p

2
 = .80), breathlessness 

(F2.0,14.0 = 34.4, P<0.001, p
2
 = .83) and thermal discomfort (F2.0,14.0 = 11.9, P<0.001, p

2
 = 

.63). Pearson’s product-moment correlations between perceptual measures and distance were 

significant during Tri-Run97% for RPE (r = 0.68, P<0.01), muscular pain (r = 0.45, P<0.05), 

breathlessness (r = 0.71, P<0.01) and thermal discomfort (r = 0.48, P<0.05). During Tri-

Run100% only breathlessness (r = 0.50, P<0.05) and thermal discomfort (r = 0.46, P<0.05) 

were associated with distance, with no associations evident during Tri-Run103% (r = 0.12 to 

0.31). Collated data from all trials indicated weak but significant associations between all 

perceptual measures and distance covered (r = 0.26 to 0.42, P = 0.001 to 0.029). 

3.4. Relationships between performance, perceptual and physiological measures 
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Repeated-measures ANOVA showed that the r coefficients between affect and other 

measures was the only significant difference when comparing running conditions, specifically 

Tri-Run97% and Tri-Run103%, (P<0.05). The strength of relationships between running speed 

and perceptual measures were similarly weak during each trial (r ranging from 0.09 to 0.30, 

0.07 to 0.42 and -0.02 to 0.24 for Tri-Run97%, Tri-Run100% and Tri-Run103%, respectively). 

Likewise, there were comparably weak associations between physiological and perceptual 

measures during each trial (r ranging from 0.00 to 0.43, 0.00 to 0.52 and -0.01 to 0.47 for Tri-

Run97%, Tri-Run100% and Tri-Run103%, respectively). Generally, physiological measures 

demonstrated stronger relationships with running speed compared to perceptual responses, 

particularly in the case of V̇ O2 (r = 0.49 to 0.61) and V̇ E (r = 0.78 to 0.80). A number of 

separate perceptual measures were found to be moderately or strongly associated with each 

other over the course of each run, with perceived effort and breathlessness in particular 

demonstrating a consistently strong relationship during all trials (r = 0.89 to 0.94). 

4. Discussion 

An important finding of this study was the achievement of the fastest run time during the most 

aggressive deception condition (Tri-Run103%), which was 14 seconds faster than Tri-Run100% 

and 25 seconds faster than Tri-Run97%. Although these differences did not achieve statistical 

significance, magnitude-based inferences suggested that Tri-Run103% performance was likely 

faster, and Tri-Run97% likely slower, compared to other trials. Furthermore, both run and 

overall event ranking positions for the top 20 triathletes at the 2012 World Age-Group Sprint-

Distance Championships were separated by an average of only 9 seconds [37]. It is therefore 

reasonable to suggest that the differences observed between each of the running conditions of 

the present study would be substantial enough to alter the outcome of non-elite, sprint-

distance triathlon competition. Whilst this finding is consistent with previous deceptive [8] 

and non-deceptive [2,27] studies of initial pace manipulation, the present study is the first to 

highlight deceptive pace manipulation as a possible method to enhance performance during 

multi-disciplinary endurance events, such as triathlon. More importantly, these findings 
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provide further evidence that expectations or beliefs play a key role in the brains regulation of 

exercise intensity so as to minimise the risk of harmful homeostatic disturbances. Indeed, it 

would appear that even during ‘all-out’ triathlon running, athletes maintain a substantial 

protective ‘reserve’ capacity which can be accessed by deception to improve performance.  

Interestingly, our results appear to disagree with the suggestion that initially aggressive 

pacing strategies may be detrimental to triathlon running performance [22,23]. Since this 

concept is based on findings from Olympic-distance competition (1.5 km swim, 40 km bike, 

10 km run), it may be that any benefit of an initially aggressive run pace is unique to the 

shorter sprint-distance triathlon format. Indeed, overcoming the time deficit associated with 

an initially conservative run strategy (i.e. up to 1.66 km) is thought to be more likely over 10 

km compared to 5 km, due to the relatively greater distance remaining and relatively lower 

increases in speed required to do so [27]. That said, our findings indicate a non-significant 

trend for any ‘lead’ acquired during an aggressively paced run to increase over the final 1.66 

km, rather than be diminished by more conservative strategies as the finish line draws closer 

(Fig. 1). It would therefore be of value for future studies to examine whether deceptive pace 

manipulation enhances performance during longer distance triathlon formats, whilst the 

selection and optimisation of pacing strategies during sprint-distance competition also 

warrants further investigation.  

Despite being deceptively manipulated, imposed running speeds maintained a significant 

effect on metabolic and respiratory responses during the first 1.66 km of run performance, 

with greater physiological strain particularly evident for Tri-Run103% compared to other trials 

(5.3 and 5.2% greater V̇ O2; 8.8 and 3.1% greater V̇ E; 21.9 and 6.8% greater [BLa
-
], compared 

to Tri-Run97% and Tri-Run100%, respectively). Furthermore, despite the negative effect of 

residual fatigue on the correlation between performance and physiological parameters during 

triathlon [38,39], physiological responses demonstrated the strongest associations with 

running speed over the course of each trial. It may therefore appear that, when regulating 

pace, the sensitivity of the brain to changes in physiological afferent signals supersedes an 
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athlete’s expectations or intentions regarding performance. As such, respiratory and metabolic 

disturbances have been proposed as key factor in the selection and maintenance of optimum 

pace during triathlon running [20], particularly when following the imposition of initially 

aggressive pacing strategies [2]. However, our findings suggest that physiological 

disturbances may only be indirectly related to, rather than a direct cause of, self-selected 

exercise intensity. Indeed, all triathletes successfully maintained the speed imposed during the 

first 1.66 km of each triathlon run (i.e. they did not succumb to preliminary fatigue or task 

failure), before consciously deciding whether to change their pace by actively pressing the 

treadmill controls. We therefore consider it unlikely that participants were simply ‘slaves’ to 

the physiological disturbances associated with faster running speeds. Instead, the observed 

changes in running speed appear to be reflective of the centrally located forecasting process 

proposed by Tucker [3], which calculates whether levels of physiological strain can be safely 

maintained for the remainder of an event and adjusts exercise intensity accordingly. This is 

supported by the achievement of an ‘end-spurt’ in the final 400 m of each trial during the 

present study (Fig. 1), which is considered indicative of centrally-regulated pacing during 

triathlon running [2,40]. Indeed, this phenomenon illustrates that the conscious regulation of 

pace remains of greater importance than inhibitory afferent signals in the presence of 

deceptively manipulated feedback [41].  

An alternate physiological explanation for faster performance during Tri-Run103% may be that 

this initially aggressive pacing strategy accelerated V̇ O2 kinetics, leading to a greater 

proportion of the energy requirement being supplied by oxidative processes and relative 

‘sparing’ of anaerobic capacity during the first 1.66 km, compared to the more conservative 

starting strategies. Indeed, our findings of greater total oxygen consumption during the initial 

section of Tri-Run103%, together with no significant differences between conditions in end-

exercise V̇ O2 and [BLa
-
], are in accordance with previous research of fast-start pacing 

strategies, albeit over a relatively shorter duration [42]. As such, initially aggressive pacing 

during the triathlon run may enhance performance via an increased oxidative contribution to 
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energy expenditure which, in turn, extends the time before the finite anaerobic capacity is 

exhausted [42]. However, due to the limited periods and frequency of physiological 

measurement during the present study, further research is needed to elucidate the role of V̇ O2 

kinetics during aggressively paced endurance events, such as the triathlon.  

Interestingly, there was no difference between running trials in the perceptual responses 

recorded for each 1.66 km section, whilst significant associations were evident between all 

perceptual measures and distance covered. Furthermore, physiological and perceptual 

measures appeared largely disassociated throughout all trials, consistent with previous non-

deceptive research of triathlon running [20]. Thus, by manipulating performance expectations 

or beliefs, deceptively aggressive pacing interventions appear to improve performance by 

modifying athletes’ perceptions of differing exercise intensities and levels of physiological 

strain. However, it is important to highlight that whilst any between-trial differences were not 

statistically significant, there was an apparent trend between perceptual responses and 

imposed running speeds during the first 1.66 km. Indeed, at 1.66 km the greatest levels of 

perceived muscular, thermal and respiratory strain, effort, and displeasure, were all 

demonstrated during Tri-Run103%, whereas the opposite was true during Tri-Run97%. It is 

possible that such a trend could be exacerbated over a longer distance (e.g. the 10 km run of 

Olympic-distance triathlon) and, in turn, have a greater impact on subsequent pacing. As 

such, it would be worthwhile for future studies to examine the effects of deceptive pace 

manipulation on perceptual responses and pace regulation during longer event formats than 

that of the present study (i.e. Olympic-distance triathlon, ultra-marathon). It is also 

noteworthy that once athletes were able to self-select running speed (i.e. 1.66 km onwards), 

values for perceptual responses appeared to converge before developing at a similar rate 

towards a common ‘terminal’ value (Fig. 3). Taken together, these findings suggest that 

whilst central processes of pace regulation appear to be somewhat reliant on task-specific 

performance expectations and beliefs, an athletes conscious intentions are secondary to the 

brains sensitivity to physiological and perceptual strain it considers as excessive in the context 
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of the ‘protective threshold’ and distance remaining. As such, it would appear that the 

perceptual ‘template’ put forward by Tucker [3] is a relatively robust construct during self-

paced performance. This is consistent with recent studies of cycling performance, which 

suggest the magnitude of deceptively aggressive pacing which can be sustained for long 

enough to benefit overall performance has relatively fine margins, which may be associated 

with established values of typical error and smallest worthwhile performance changes [7,8].  

Lastly, it has been suggested that, compared to other perceptual responses, affect may be 

particularly important in the central regulation of pacing during endurance tasks, with more 

negative affect associated with reduced tolerance of physiological strain and poorer 

performance [17]. However, it would appear that the findings of the present study do not 

support this suggestion, with the most negative levels of affect apparent throughout the 

quicker, more aggressive, and thus more physiologically stressful, deception conditions (Figs. 

2 and 3). Furthermore, we found affect to be just as weakly related to physiological responses 

as other perceptual measures. That said, a number of findings from the present study 

corroborate with those of Renfree et al. [17] whereby more aggressive pacing strategies, and 

greater levels of metabolic strain, are associated with superior endurance performance. 

Performance enhancement by deception may therefore result from an altered association 

within the brain between affect and physiological strain, leading to a greater willingness to 

persevere with workloads that would otherwise be considered unsustainable. It is also 

possible that triathletes associate negative affect with more successful performance, 

embracing the ability or willingness to withstand ‘suffering’ as an essential part of the sport 

[43]. This certainly warrants further study in relation to differing triathlon distances and 

ability levels, whilst future studies may also examine the possibility of discipline or sport-

specific relationships between affect and performance to gain a better understanding of 

potential performance-enhancing interventions [17].  

5. Conclusions 
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Extending the findings of previous research [7,8,10-13], this novel study demonstrates the 

potential for deceptive pacing interventions to elicit practically meaningful changes in multi-

disciplinary endurance performance. Despite previous suggestions to the contrary [22,23], a 

deceptively aggressive initial pace appears to produce a better overall run performance during 

sprint-distance triathlon, compared to more conservative starting strategies. Whilst this 

suggests that existing expectations and beliefs can strongly influence pace regulation, and 

may allow an individual to access a previously untapped physiological ‘reserve’, it is apparent 

that any conscious intentions are secondary to the brains sensitivity to potentially harmful 

levels of physiological and perceptual strain. As such, future studies may examine the impact 

of negative effect on performance optimisation and pacing in longer formats of triathlon, and 

also across a wider range of sports. Future pacing research should also consider moving away 

from abstract explanatory constructs such as the performance ‘template’, or ‘central 

governor’, and instead strive to examine specific brain regions and pathways which are 

responsible for the regulation of pacing, both in deceptive and non-deceptive contexts.  
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Figure legends 

Figure 1 Cumulative times for each 1.66 km section completed in each running condition. 

Significantly different from Tri-Run97% value, 
a
 P<0.05, 

aa
 P<0.01. Significantly different 

from Tri-Run100% value, 
b
 P<0.05, 

bb
 P<0.01. Significantly different from Tri-Run103% value, 

c
 

P<0.05, 
cc

 P<0.01. 

Figure 2 Mean running speed for each 1.66 km (solid lines) and 200 m (dashed lines) 

completed in each running condition (error bars removed for clarity). 

Figure 3 Mean blood lactate concentration ([BLa
-
]), heart rate, oxygen uptake (V̇ O2), 

ventilation (V̇ E) and respiratory exchange ratio (RER) for each 1.66 km section of all running 

trials (error bars removed for clarity). Significantly different from initial Tri-Run100% value, 
b
 

P<0.05. Significantly different from initial Tri-Run103% value, 
c
 P<0.05, 

cc
 P<0.01. 

Significantly different from initial Tri-Run100% value, 
BB

 P<0.01. 

Figure 4 Mean ratings of perceived muscular pain, effort, breathlessness, affect and thermal 

discomfort for each 1.66 km section of all running trials (error bars removed for clarity). 

Significantly different from initial Tri-Run97% value, 
a
 P<0.05, 

aa
 P<0.01. Significantly 

different from initial Tri-Run100% value, 
b
 P<0.05, 

bb
 P<0.01. Significantly different from 

initial Tri-Run103% value, 
c
 P<0.05. Significantly different from previous Tri-Run97% value, 

A
 

P<0.05. Significantly different from initial Tri-Run100% value, 
B
 P<0.05. 
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Figure 1 
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Figure 4 
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Highlights 

 

 Deceptive pacing interventions elicit meaningful changes in triathlon performance. 

 As such, running performance is enhanced by deceptively aggressive initial pacing.  

 Greater negative affect is evident during quicker, more aggressive run performance. 

 Deception encourages tolerance of workloads otherwise considered as 
unsustainable. 

 However, conscious intent is secondary to critical levels of physiological strain. 


