37 research outputs found

    Development of criteria und procedures for the evaluation of the European Action Plan of Organic Food and Farming

    Get PDF
    Within the EU funded project ORGAP a toolbox for the evaluation of the European as well as national action plans for organic food and farming has been developed (www.orgap.org). This toolbox was based on a comparative analysis of national action plans in eight countries (CH, UK, DE, IT, DK, SI, CZ, NL, ES), a meta-evaluation of existing evaluations of national action plans, workshops with national stakeholders and a European Advisory Committee, interviews with experts. Furthermore synergies and conflicts between national and the European Action Plan were identified

    Lessons learnt from ORGAP Project – planning, implementation and evaluation of Action Plans for Organic Food and Farming

    Get PDF
    Within the EU funded project ORGAP, a toolbox was developed for the evaluation of the European as well as national action plans for organic food and farming. Also recommendations and a resource manual for policy makers and stakeholders were developed. These were based on the analysis of national Organic Action Plans as well as stakeholder and expert consultation. The analysis showed that several EU member states have emphasised the need to balance supply-push policies with more market-focused demand-pull policies. An integrated approach is required and this has been to differing degrees through the formulation of multi-functional Organic Action Plans (OAPs), which also adress the dual roles of organic farming (from a policy perspective) to provide public goods and satisfy consumer demand. Eight Organic Action Plans, reviewed in the ORGAP project, vary with regard to the elaboration process, targets, objectives and the emphasis of measures on certain areas (e.g. market versus environment orientation). This variation is due to quite different political and socio-economic framework conditions for organic farming in these countries. It revealed that the weaknesses identified in the status quo analysis of the organic sector have only partly been translated to the targets and measures included in the action plan documents. Definition of the priorities for development of organic agriculture must be agreed by all relevant stakeholders. The priorities, and hence the programmes, will depend on correct analysis of the issues (and conflicts) that need to be addressed and clear objectives with measurable outcomes (for effective evaluation). For more information on the project, on the practical project manual and the evaluation toolbox for Organic Action Plans see project website www.orgap.or

    Absorption and mobility of foliar-applied boron in soybean as affected by plant boron status and application as a polyol complex

    Get PDF
    In the present study (i) the impact of plant Boron (B) status on foliar B absorption and (ii) the effect of B complexation with polyols (sorbitol or mannitol) on B absorption and translocation was investigated. Soybean (Glycine max (L.) Meer.) plants grown in nutrient solution containing 0 μM, 10 μM, 30 μM or 100 μM 11B labelled boric acid (BA) were treated with 50 mM 10B labelled BA applied to the basal parts of two leaflets of one leaf, either pure or in combination with 500 mM sorbitol or mannitol. After one week, 10B concentrations in different plant parts were determined. In B deficient leaves (0 μM 11B), 10B absorption was significantly lower than in all other treatments (9.7% of the applied dose vs. 26%–32%). The application of BA in combination with polyols increased absorption by 18–25% as compared to pure BA. The absolute amount of applied 10B moving out of the application zone was lowest in plants with 0 μM 11B supply (1.1% of the applied dose) and highest in those grown in 100 μM 11B (2.8%). The presence of sorbitol significantly decreased the share of mobile 10B in relation to the amount absorbed. The results suggest that 11B deficiency reduces the permeability of the leaf surface for BA. The addition of polyols may increase 10B absorption, but did not improve 10B distribution within the plant, which was even hindered when applied a sorbitol complex

    Reassessing associations between white matter and behaviour with multimodal microstructural imaging

    Get PDF
    Several studies have established specific relationships between White Matter (WM) and behaviour. However, these studies have typically focussed on fractional anisotropy (FA), a neuroimaging metric that is sensitive to multiple tissue properties, making it difficult to identify what biological aspects of WM may drive such relationships. Here, we carry out a pre-registered assessment of WM-behaviour relationships in 50 healthy individuals across multiple behavioural and anatomical domains, and complementing FA with myelin-sensitive quantitative MR modalities (MT, R1, R2∗). Surprisingly, we only find support for predicted relationships between FA and behaviour in one of three pre-registered tests. For one behavioural domain, where we failed to detect an FA-behaviour correlation, we instead find evidence for a correlation between behaviour and R1. This hints that multimodal approaches are able to identify a wider range of WM-behaviour relationships than focusing on FA alone. To test whether a common biological substrate such as myelin underlies WM-behaviour relationships, we then ran joint multimodal analyses, combining across all MRI parameters considered. No significant multimodal signatures were found and power analyses suggested that sample sizes of 40-200 may be required to detect such joint multimodal effects, depending on the task being considered. These results demonstrate that FA-behaviour relationships from the literature can be replicated, but may not be easily generalisable across domains. Instead, multimodal microstructural imaging may be best placed to detect a wider range of WM-behaviour relationships, as different MRI modalities provide distinct biological sensitivities. Our findings highlight a broad heterogeneity in WM's relationship with behaviour, suggesting that variable biological effects may be shaping their interaction

    Abstracts from the 8th International Conference on cGMP Generators, Effectors and Therapeutic Implications

    Get PDF
    This work was supported by a restricted research grant of Bayer AG

    Miscanthus × giganteus nutrient concentrations and uptakes in autumn and winter harvests as influenced by soil texture, irrigation and nitrogen fertilization in the Mediterranean

    Get PDF
    Fertilization has a great impact on GHG emissions and crop nutrient requirements play an important role on the sustainability of cropping systems. In the case of bioenergy production, low concentration of nutrients in the biomass is also required for specific conversion processes (e.g. combustion). In this work, we investigated the influence of soil texture, irrigation and nitrogen fertilization rate on nitrogen, phosphorus and potassium concentrations and uptakes in Miscanthus × giganteus when harvested at two different times: early (autumn) and late (winter). Our results confirmed winter harvest to significantly reduce nutrient removals by as much as 80% compared to autumn. On the other hand, a few attempts have been made to investigate the role of soil texture and irrigation on nutrients in miscanthus biomass, particularly in the Mediterranean. We observed an effect of soil mainly on nutrient concentrations. Similarly, irrigation led to higher nutrient concentrations, while its effect on nutrient uptakes was less straightforward. Overall, the observed differences in miscanthus nutrient uptakes as determined by the crop management (i.e. irrigation and nitrogen fertilization) were highlighted for autumn harvest only, while uptakes in all treatments were lowered to similar values when winter harvest was performed. This study stressed the importance of the time of harvest on nutrient removals regardless of the other management options. Further investigation on the environmental and economic issues should be addressed to support decisions on higher yields-higher nutrient requirements (early harvest) vs. lower yields-lower nutrient requirements (late harvest)
    corecore