8 research outputs found

    Dynamic Measurement of Hemodynamic Parameters and Cardiac Preload in Adults with Dengue: A Prospective Observational Study.

    No full text
    Few previous studies have monitored hemodynamic parameters to determine the physiological process of dengue or examined inferior vena cava (IVC) parameters to assess cardiac preload during the clinical phase of dengue. From January 2013 to July 2015, we prospectively studied 162 hospitalized adults with confirmed dengue viral infection using non-invasive cardiac output monitoring and bedside ultrasonography to determine changes in hemodynamic and IVC parameters and identify the types of circulatory shock that occur in patients with dengue. Of 162 patients with dengue, 17 (10.5%) experienced dengue shock and 145 (89.5%) did not. In patients with shock, the mean arterial pressure was significantly lower on day 6 after fever onset (P = 0.045) and the pulse pressure was significantly lower between days 4 and 7 (P<0.05). The stroke volume index and cardiac index were significantly decreased between days 4 and 15 and between days 5 and 8 after fever onset (P<0.05), respectively. A significant proportion of patients with dengue shock had an IVC diameter <1.5 cm and IVC collapsibility index >50% between days 4 and 5 (P<0.05). Hypovolemic shock was observed in 9 (52.9%) patients and cardiogenic shock in 8 (47.1%), with a median (interquartile range) time to shock onset of 6.0 (5.0-6.5) days after fever onset, which was the median day of defervescence. Intravascular hypovolemia occurred before defervescence, whereas myocardial dysfunction occurred on the day of defervescence until 2 weeks after fever onset. Hypovolemic shock and cardiogenic shock each occurred in approximately half of the patients with dengue shock. Therefore, dynamic measures to estimate changes in hemodynamic parameters and preload should be monitored to ensure adequate fluid therapy among patients with dengue, particularly patients with dengue shock

    Inferior vena cava parameters by day after fever onset among patients with and without dengue shock.

    No full text
    <p>(A) A Bland-Altman plot of data from the intraobserver reliability study. The mean IVCdmax (cm) of each patient was plotted against the difference in IVCd (cm) between two measurements (811 measurements each) obtained by the same observer. (B) A Bland-Altman plot of data from the intraobserver reliability study. The mean IVCdmin (cm) of each patient was plotted against the difference in IVCd (cm) between two measurements (811 measurements each) obtained by the same observer. (C) IVCd (cm) after fever onset among patients with and without dengue shock (D) IVCc (%) after fever onset among patients with and without dengue shock. IVCc = Inferior vena cava collapsibility index; IVCd = inferior vena cava diameter; IVCdmax = maximum inferior vena cava diameter; IVCdmin = minimum inferior vena cava diameter; LLA = lower limit of agreement; NA = not applicable; ULA = upper limit of agreement.</p

    Hemodynamic parameters by day after fever onset among patients with and without dengue shock.

    No full text
    <p>(A) MAP (mmHg) after fever onset among patients with and without dengue shock. (B) PP (mmHg) after fever onset among patients with and without dengue shock. (C) HR (beats/min) after fever onset among patients with and without dengue shock. (D) CI (L/min/m<sup>2</sup>) after fever onset among patients with and without dengue shock. (E) TPRI (dynes∙sec/cm<sup>5</sup>/m<sup>2</sup>) after fever onset among patients with and without dengue shock. (F) SVI (mL/m<sup>2</sup>/beat) after fever onset among patients with and without dengue shock. CI = cardiac index; HR = heart rate; MAP = mean arterial pressure; NA = not applicable; PP = pulse pressure; SVI = stroke volume index; TPRI = total peripheral resistance index.</p

    Consumption of fruits and vegetables and associations with risk factors for non-communicable diseases in the Yangon region of Myanmar: A cross-sectional study

    No full text
    OBJECTIVES: To explore the intake of fruits and vegetables in the Yangon region, Myanmar, and to describe associations between intake of fruits and vegetables (FV) and established risk factors for non-communicable diseases. DESIGN: 2 cross-sectional studies, using the STEPs methodology. SETTING: Urban and rural areas of the Yangon region of Myanmar. PARTICIPANTS: 1486, men and women, 25-74 years, were recruited through a multistage cluster sampling method. Institutionalised people, military personnel, Buddhist monks and nuns were not invited. Physically and mentally ill people were excluded. RESULTS: Mean intake of fruit was 0.8 (SE 0.1) and 0.6 (0.0) servings/day and of vegetables 2.2 (0.1) and 1.2 (0.1) servings/day, in urban and rural areas, respectively. Adjusted for included confounders (age, sex, location, income, education, smoking and low physical activity), men and women eating ≥2 servings of fruits and vegetables/day had lower odds than others of hypertriglyceridaemia (OR 0.72 (95% CI 0.56 to 0.94)). On average, women eating at least 2 servings of fruits and vegetables per day had cholesterol levels 0.28 mmol/L lower than the levels of other women. When only adjusted for sex and age, men eating at least 2 servings of fruits and vegetables per day had cholesterol levels 0.27 mmol/L higher than other men. CONCLUSIONS: A high intake of FV was associated with lower odds of hypertriglyceridaemia among men and women. It was also associated with cholesterol levels, negatively among women and positively among men

    Effect of generalised access to early diagnosis and treatment and targeted mass drug administration on Plasmodium falciparum malaria in Eastern Myanmar : an observational study of a regional elimination programme

    No full text
    International audienceBACKGROUND:Potentially untreatable Plasmodium falciparum malaria threatens the Greater Mekong subregion. A previous series of pilot projects in Myanmar, Laos, Cambodia, and Vietnam suggested that mass drug administration was safe, and when added to provision of early diagnosis and treatment, could reduce the reservoir of P falciparum and interrupts transmission. We examined the effects of a scaled-up programme of this strategy in four townships of eastern Myanmar on the incidence of P falciparum malaria.METHODS:The programme was implemented in the four townships of Myawaddy, Kawkareik, Hlaingbwe, and Hpapun in Kayin state, Myanmar. Increased access to early diagnosis and treatment of malaria was provided to all villages through community-based malaria posts equipped with rapid diagnostic tests, and treatment with artemether-lumefantrine plus single low-dose primaquine. Villages were identified as malarial hotspots (operationally defined as >40% malaria, of which 20% was P falciparum) with surveys using ultrasensitive quantitative PCR either randomly or targeted at villages where the incidence of clinical cases of P falciparum malaria remained high (ie, >100 cases per 1000 individuals per year) despite a functioning malaria post. During each survey, a 2 mL sample of venous blood was obtained from randomly selected adults. Hotspots received targeted mass drug administration with dihydroartemisinin-piperaquine plus single-dose primaquine once per month for 3 consecutive months in addition to the malaria posts. The main outcome was the change in village incidence of clinical P falciparum malaria, quantified using a multivariate, generalised, additive multilevel model. Malaria prevalence was measured in the hotspots 12 months after mass drug administration.FINDINGS:Between May 1, 2014, and April 30, 2017, 1222 malarial posts were opened, providing early diagnosis and treatment to an estimated 365 000 individuals. Incidence of P falciparum malaria decreased by 60 to 98% in the four townships. 272 prevalence surveys were undertaken and 69 hotspot villages were identified. By April 2017, 50 hotspots were treated with mass drug administration. Hotspot villages had a three times higher incidence of P falciparum at malarial posts than neighbouring villages (adjusted incidence rate ratio [IRR] 2·7, 95% CI 1·8-4·4). Early diagnosis and treatment was associated with a significant decrease in P falciparum incidence in hotspots (IRR 0·82, 95% CI 0·76-0·88 per quarter) and in other villages (0·75, 0·73-0·78 per quarter). Mass drug administration was associated with a five-times decrease in P falciparum incidence within hotspot villages (IRR 0·19, 95% CI 0·13-0·26). By April, 2017, 965 villages (79%) of 1222 corresponding to 104 village tracts were free from P falciparum malaria for at least 6 months. The prevalence of wild-type genotype for K13 molecular markers of artemisinin resistance was stable over the three years (39%; 249/631).INTERPRETATION:Providing early diagnosis and effective treatment substantially decreased village-level incidence of artemisinin-resistant P falciparum malaria in hard-to-reach, politically sensitive regions of eastern Myanmar. Targeted mass drug administration significantly reduced malaria incidence in hotspots. If these activities could proceed in all contiguous endemic areas in addition to standard control programmes already implemented, there is a possibility of subnational elimination of P falciparum.FUNDING:The Bill & Melinda Gates Foundation, the Regional Artemisinin Initiative (Global Fund against AIDS, Tuberculosis and Malaria), and the Wellcome Trust
    corecore