43 research outputs found

    The importance of alternative splicing in adaptive evolution

    Get PDF
    Although alternative splicing is a ubiquitous co-transcriptional gene regulatory mechanism in plants, animals and fungi, its contribution to evolutionary transitions is understudied. Alternative splicing enables different mRNA isoforms to be generated from the same gene, expanding transcriptomic and thus proteomic diversity. While the role of gene expression variation in adaptive evolution is widely accepted, biologists still debate the functional impact of alternative isoforms on phenotype. In light of recent empirical research linking splice variation to ecological adaptations, we propose that alternative splicing is an important substrate for adaptive evolution and speciation, particularly at short timescales. In this article we synthesise what is known about the role of alternative splicing in adaptive evolution. We discuss the contribution of standing splice variation to phenotypic plasticity and how hybridisation can produce novel splice forms. Going forwards, we propose that alternative splicing be included as a standard analysis alongside gene expression analysis so we can better understand of how alternative splicing contributes to adaptive divergence at the micro- and macroevolutionary levels.Peer reviewe

    Impaired leptin signaling causes subfertility in female zebrafish

    Get PDF
    Reproduction is an energetically costly event across vertebrates and tightly linked to nutritional status and en-ergy reserves. In mammals, the hormone leptin is considered as a link between energy homeostasis and repro-duction. However, its role in fish reproduction is still unclear. In this study, we investigated the possible role of leptin in the regulation of reproduction in zebrafish, using a loss of function leptin receptor (lepr) strain. Impaired leptin signaling resulted in severe reproductive deficiencies in female zebrafish. lepr mutant females laid significantly fewer eggs, with low fertilization rates compared to wild-type females. Folliculogenesis was not affected, but oocyte maturation and ovulation were disrupted in lepr mutants. Interestingly, the expression of luteinizing hormone beta (lhb) in the pituitary was significantly lower in mutant females. Analysis of candidate genes in the ovaries and isolated fully grown follicles revealed differential expression of genes involved in ste-roidogenesis, oocyte maturation and ovulation in the mutants, which are known to be regulated by LH signaling. Moreover, subfertility in lepr mutants could be partially restored by administration of human chorionic gonad-otropin. In conclusion, our results show that leptin deficiency does not affect early stages of follicular devel-opment, but leptin might be essential in later steps, such as in oocyte maturation and ovulation. To our knowledge, this is the first time that leptin is associated to reproductive deficiencies in zebrafish.Peer reviewe

    Transcriptional study reveals a potential leptin-dependent gene regulatory network in zebrafish brain

    Get PDF
    The signal mediated by leptin hormone and its receptor is a major regulator of body weight, food intake and metabolism. In mammals and many teleost fish species, leptin has an anorexigenic role and inhibits food intake by influencing the appetite centres in the hypothalamus. However, the regulatory connections between leptin and downstream genes mediating its appetite-regulating effects are still not fully explored in teleost fish. In this study, we used a loss of function leptin receptor zebrafish mutant and real-time quantitative PCR to assess brain expression patterns of several previously identified anorexigenic genes downstream of leptin signal under different feeding conditions (normal feeding, 7-day fasting, 2 and 6-h refeeding). These downstream factors include members of cart genes, crhb and gnrh2, as well as selected genes co-expressed with them based on a zebrafish co-expression database. Here, we found a potential gene expression network (GRN) comprising the abovementioned genes by a stepwise approach of identifying co-expression modules and predicting their upstream regulators. Among the transcription factors (TFs) predicted as potential upstream regulators of this GRN, we found expression pattern of sp3a to be correlated with transcriptional changes of the downstream gene network. Interestingly, the expression and transcriptional activity of Sp3 orthologous gene in mammals have already been implicated to be under the influence of leptin signal. These findings suggest a potentially conserved regulatory connection between leptin and sp3a, which is predicted to act as a transcriptional driver of a downstream gene network in the zebrafish brain.Peer reviewe

    Expression variations in ectodysplasin-A gene (eda) may contribute to morphological divergence of scales in haplochromine cichlids

    Get PDF
    Background Elasmoid scales are one of the most common dermal appendages and can be found in almost all species of bony fish differing greatly in their shape. Whilst the genetic underpinnings behind elasmoid scale development have been investigated, not much is known about the mechanisms involved in moulding of scales. To investigate the links between gene expression differences and morphological divergence, we inferred shape variation of scales from two different areas of the body (anterior and posterior) stemming from ten haplochromine cichlid species from different origins (Lake Tanganyika, Lake Malawi, Lake Victoria and riverine). Additionally, we investigated transcriptional differences of a set of genes known to be involved in scale development and morphogenesis in fish. Results We found that scales from the anterior and posterior part of the body strongly differ in their overall shape, and a separate look on scales from each body part revealed similar trajectories of shape differences considering the lake origin of single investigated species. Above all, nine as well as 11 out of 16 target genes showed expression differences between the lakes for the anterior and posterior dataset, respectively. Whereas in posterior scales four genes (dlx5, eda, rankl and shh) revealed significant correlations between expression and morphological differentiation, in anterior scales only one gene (eda) showed such a correlation. Furthermore, eda displayed the most significant expression difference between species of Lake Tanganyika and species of the other two younger lakes. Finally, we found genetic differences in downstream regions of eda gene (e.g., in the eda-tnfsf13b inter-genic region) that are associated with observed expression differences. This is reminiscent of a genetic difference in the eda-tnfsf13b inter-genic region which leads to gain or loss of armour plates in stickleback. Conclusion These findings provide evidence for cross-species transcriptional differences of an important morphogenetic factor, eda, which is involved in formation of ectodermal appendages. These expression differences appeared to be associated with morphological differences observed in the scales of haplochromine cichlids indicating potential role of eda mediated signal in divergent scale morphogenesis in fish.Peer reviewe

    Strong regulatory effects of vgll3 genotype on reproductive axis gene expression in juvenile male Atlantic salmon

    Get PDF
    Age at maturity is a major contributor to the diversity of life history strategies in organisms. The process of maturation is influenced by both genetics and the environment, and includes changes in levels of sex hormones and behavior, but the specific factors leading to variation in maturation timing are poorly understood. gnrh1 regulates the transcription of gonadotropin genes at pubertal onset in many species, but this gene is lacking in certain teleost species including Atlantic salmon (Salmo salar), which raises the possibility of the involvement of other important regulatory factors during this process. Earlier research has reported a strong association of alternative alleles of the vgll3 gene with maturation timing in Atlantic salmon, suggesting it as a potential candidate regulating reproductive axis genes. Here, we investigated the expression of reproductive axis genes in one-year-old Atlantic salmon males with immature gonads and different vgll3 genotypes during the spawning period. We detected strong vgll3 genotype-dependent differential expression of reproductive axis genes (such as fshb, lhb, amh and igf3) tested in the pituitary, and testis. In addition, we observed differential expression of jun (ap1) and nr5a1b (sf1), potential upstream regulators of gonadotropins in the pituitary, as well as axin2, id3, insl3, itch, ptgs2a and ptger4b, the downstream targets of amh and igf3 in the testis. Hereby, we provide evidence of strong vgll3 genotype-dependent transcriptional regulation of reproductive axis genes prior to sexual maturation and suggest alternative models for distinct actions of vgll3 genotypes on the related molecular processes.Peer reviewe

    Gene co-expression network analysis reveals mechanisms underlying ozone-induced carbamazepine toxicity in zebrafish (Danio rerio) embryos

    Get PDF
    Sewage effluent ozonation can reduce concentrations of chemical pollutants including pharmaceutical residues. However, the formation of potentially toxic ozonation byproducts (OBPs) is a matter of concern. This study sought to elucidate toxicity mechanisms of ozonated carbamazepine (CBZ), an anti-epileptic drug frequently detected in sewage effluents and surface water, in zebrafish embryos (Danio rerio). Embryos were exposed to ozonated and non-ozonated CBZ from 3 h post-fertilization (hpf) until 144 hpf. Embryotoxicity endpoints (proportion of dead and malformed embryos) were assessed at 24, 48, and 144 hpf. Heart rate was recorded at 48 hpf. Exposure to ozonated CBZ gave rise to cardiovascular-related malformations and reduced heart rate. Moreover, embryo-larvae exposed to ozonated CBZ displayed a lack of swim bladder inflation. Hence, the expression patterns of CBZ target genes involved in cardiovascular and embryonal development were investigated through a stepwise gene co-expression analysis approach. Two co-expression networks and their upstream transcription regulators were identified, offering mechanistic explanations for the observed toxicity phenotypes. The study presents a novel application of gene co-expression analysis elucidating potential toxicity mechanisms of an ozonated pharmaceutical with environmental relevance. The resulting data was used to establish a putative adverse outcome pathway (AOP).Peer reviewe

    Transcriptomics unravels molecular players shaping dorsal lip hypertrophy in the vacuum cleaner cichlid, Gnathochromis permaxillaris

    Get PDF
    BackgroundTeleosts display a spectacular diversity of craniofacial adaptations that often mediates ecological specializations. A considerable amount of research has revealed molecular players underlying skeletal craniofacial morphologies, but less is known about soft craniofacial phenotypes. Here we focus on an example of lip hypertrophy in the benthivorous Lake Tangnayika cichlid, Gnathochromis permaxillaris, considered to be a morphological adaptation to extract invertebrates out of the uppermost layer of mud bottom. We investigate the molecular and regulatory basis of lip hypertrophy in G. permaxillaris using a comparative transcriptomic approach.ResultsWe identified a gene regulatory network involved in tissue overgrowth and cellular hypertrophy, potentially associated with the formation of a locally restricted hypertrophic lip in a teleost fish species. Of particular interest were the increased expression level of apoda and fhl2, as well as reduced expression of cyp1a, gimap8, lama5 and rasal3, in the hypertrophic lip region which have been implicated in lip formation in other vertebrates. Among the predicted upstream transcription factors, we found reduced expression of foxp1 in the hypertrophic lip region, which is known to act as repressor of cell growth and proliferation, and its function has been associated with hypertrophy of upper lip in human.ConclusionOur results provide a genetic foundation for future studies of molecular players shaping soft and exaggerated, but locally restricted, craniofacial morphological changes in fish and perhaps across vertebrates. In the future, we advocate integrating gene regulatory networks of various craniofacial phenotypes to understand how they collectively govern trophic and behavioural adaptations.Peer reviewe

    Differential gene expression during early development in recently evolved and sympatric Arctic charr morphs

    Get PDF
    Phenotypic differences between closely related taxa or populations can arise through genetic variation or be environmentally induced, leading to altered transcription of genes during development. Comparative developmental studies of closely related species or variable populations within species can help to elucidate the molecular mechanisms related to evolutionary divergence and speciation. Studies of Arctic charr (Salvelinus alpinus) and related salmonids have revealed considerable phenotypic variation among populations and in Arctic charr many cases of extensive variation within lakes (resource polymorphism) have been recorded. One example is the four Arctic charr morphs in the ∼10,000 year old Lake Thingvallavatn, which differ in numerous morphological and life history traits. We set out to investigate the molecular and developmental roots of this polymorphism by studying gene expression in embryos of three of the morphs reared in a common garden set-up. We performed RNA-sequencing, de-novo transcriptome assembly and compared gene expression among morphs during an important timeframe in early development, i.e., preceding the formation of key trophic structures. Expectedly, developmental time was the predominant explanatory variable. As the data were affected by some form of RNA-degradation even though all samples passed quality control testing, an estimate of 3′-bias was the second most common explanatory variable. Importantly, morph, both as an independent variable and as interaction with developmental time, affected the expression of numerous transcripts. Transcripts with morph effect, separated the three morphs at the expression level, with the two benthic morphs being more similar. However, Gene Ontology analyses did not reveal clear functional enrichment of transcripts between groups. Verification via qPCR confirmed differential expression of several genes between the morphs, including regulatory genes such as AT-Rich Interaction Domain 4A (arid4a) and translin (tsn). The data are consistent with a scenario where genetic divergence has contributed to differential expression of multiple genes and systems during early development of these sympatric Arctic charr morphs.he project was funded by The Icelandic Center for Research (grant number: 100204011) to Sigurður S. Snorrason, Arnar Pálsson, Zophonías O. Jónsson and Bjarni K. Kristjánsson. The University of Iceland Doctoral Fund to Jóhannes Guðbrandsson and University of Iceland research fund to Arnar Pálsson, Sigurður S. Snorrason and Zophonías O. Jónsson. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer Reviewe

    Transcriptional dynamics of a conserved gene expression network associated with craniofacial divergence in Arctic charr

    Get PDF
    Background Understanding the molecular basis of craniofacial variation can provide insights into key developmental mechanisms of adaptive changes and their role in trophic divergence and speciation. Arctic charr (Salvelinus alpinus) is a polymorphic fish species, and, in Lake Thingvallavatn in Iceland, four sympatric morphs have evolved distinct craniofacial structures. We conducted a gene expression study on candidates from a conserved gene coexpression network, focusing on the development of craniofacial elements in embryos of two contrasting Arctic charr morphotypes (benthic and limnetic). Results Four Arctic charr morphs were studied: one limnetic and two benthic morphs from Lake Thingvallavatn and a limnetic reference aquaculture morph. The presence of morphological differences at developmental stages before the onset of feeding was verified by morphometric analysis. Following up on our previous findings that Mmp2 and Sparc were differentially expressed between morphotypes, we identified a network of genes with conserved coexpression across diverse vertebrate species. A comparative expression study of candidates from this network in developing heads of the four Arctic charr morphs verified the coexpression relationship of these genes and revealed distinct transcriptional dynamics strongly correlated with contrasting craniofacial morphologies (benthic versus limnetic). A literature review and Gene Ontology analysis indicated that a significant proportion of the network genes play a role in extracellular matrix organization and skeletogenesis, and motif enrichment analysis of conserved noncoding regions of network candidates predicted a handful of transcription factors, including Ap1 and Ets2, as potential regulators of the gene network. The expression of Ets2 itself was also found to associate with network gene expression. Genes linked to glucocorticoid signalling were also studied, as both Mmp2 and Sparc are responsive to this pathway. Among those, several transcriptional targets and upstream regulators showed differential expression between the contrasting morphotypes. Interestingly, although selected network genes showed overlapping expression patterns in situ and no morph differences, Timp2 expression patterns differed between morphs. Conclusion Our comparative study of transcriptional dynamics in divergent craniofacial morphologies of Arctic charr revealed a conserved network of coexpressed genes sharing functional roles in structural morphogenesis. We also implicate transcriptional regulators of the network as targets for future functional studies.This project was supported by The Icelandic Centre for Research (RANNIS/IRF, grant 100204) and The University of Iceland Research Fund.Peer Reviewe
    corecore