1,236 research outputs found

    Modular detergents tailor the purification and structural analysis of membrane proteins including G-protein coupled receptors

    Get PDF
    Detergents enable the purification of membrane proteins and are indispensable reagents instructural biology. Even though a large variety of detergents have been developed in the lastcentury, the challenge remains to identify guidelines that allowfine-tuning of detergents forindividual applications in membrane protein research. Addressing this challenge, here weintroduce the family of oligoglycerol detergents (OGDs). Native mass spectrometry (MS)reveals that the modular OGD architecture offers the ability to control protein purificationand to preserve interactions with native membrane lipids during purification. In addition to abroad range of bacterial membrane proteins, OGDs also enable the purification and analysisof a functional G-protein coupled receptor (GPCR). Moreover, given the modular design ofthese detergents, we anticipatefine-tuning of their properties for specific applications instructural biology. Seen from a broader perspective, this represents a significant advance forthe investigation of membrane proteins and their interactions with lipids

    Wavelength Orthogonal Photodynamic Networks

    Get PDF
    The ability of light to remotely control the properties of soft matter materials in a dynamic fashion has fascinated material scientists and photochemists for decades. However, only recently has our ability to map photochemical reactivity in a finely wavelength resolved fashion allowed for different colors of light to independently control the material properties of polymer networks with high precision, driven by monochromatic irradiation enabling orthogonal reaction control. The current concept article highlights the progress in visible light-induced photochemistry and explores how it has enabled the design of polymer networks with dynamically adjustable properties. We will explore current applications ranging from dynamic hydrogel design to the light-driven adaptation of 3D printed structures on the macro- and micro-scale. While the alternation of mechanical properties via remote control is largely reality for soft matter materials, we herein propose the next frontiers for adaptive properties, including remote switching between conductive and non-conductive properties, hydrophobic and hydrophilic surfaces, fluorescent or non-fluorescent, and cell adhesive vs. cell repellent properties

    Modular detergents tailor the purification and structural analysis of membrane proteins including G-protein coupled receptors

    Get PDF
    Detergents enable the purification of membrane proteins and are indispensable reagents in structural biology. Even though a large variety of detergents have been developed in the last century, the challenge remains to identify guidelines that allow fine-tuning of detergents for individual applications in membrane protein research. Addressing this challenge, here we introduce the family of oligoglycerol detergents (OGDs). Native mass spectrometry (MS) reveals that the modular OGD architecture offers the ability to control protein purification and to preserve interactions with native membrane lipids during purification. In addition to a broad range of bacterial membrane proteins, OGDs also enable the purification and analysis of a functional G-protein coupled receptor (GPCR). Moreover, given the modular design of these detergents, we anticipate fine-tuning of their properties for specific applications in structural biology. Seen from a broader perspective, this represents a significant advance for the investigation of membrane proteins and their interactions with lipids

    A prospective clinical trial on the influence of a triamcinolone/demeclocycline and a calcium hydroxide based temporary cement on pain perception

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>The aim of this clinical trial was to compare the degree of short term post-operative irritation after application of a triamcinolone/demeclocycyline based or a calcium hydroxide based provisional cement.</p> <p>Methods</p> <p>A total of 109 patients (55 female and 54 male; mean age: 51 ± 14 years) with primary or secondary dentinal caries were randomly assigned to the two treatment groups of this biomedical clinical trial (phase III). Selection criteria were good systemic health and treated teeth, which were vital and showed no symptoms of pulpitis. Up to three teeth were prepared for indirect metallic restorations, and the provisional restorations were cemented with a triamcinolone/demeclocycyline (Ledermix) or a calcium hydroxide (Provicol) based material. The intensity of post-operative pain experienced was documented according to the VAS (4, 12, 20, 24, and 82 h) and compared to VAS baseline.</p> <p>Results</p> <p>A total of 159 teeth were treated (Ledermix: 83 teeth, Provicol: 76 teeth). The minor irritation of the teeth, experienced prior to treatment, was similar in both groups; however, 4 h after treatment this value was significantly higher in the Provicol group than in the Ledermix group (p < 0.005, t-test). After 12 h, the difference was no longer significant. The number of patients taking analgesics for post-treatment pain was higher in the Provicol group (n = 11/53) than in the Ledermix group (n = 3/56).</p> <p>Conclusions</p> <p>The patients had no long term post-operative pain experience in both groups. However, within the first hours after cementation the sensation of pain was considerably higher in the Provicol group than in the Ledermix group.</p

    NMR spectroscopy and perfusion of mammalian cells using surface microprobes

    Get PDF
    NMR spectra of mammalian cells are taken using surface microprobes that are based on microfabricated planar coils. The surface microprobe resembles a miniaturized Petri dish commonly used in biological research. The diameter of the planar coils is 1 mm. Chinese Hamster Ovaries are immobilized in a uniform layer on the microprobe surface or patterned by an ink-jet printer in the centre of the microcoil, where the rf-field of the planar microcoil is most uniform. The acquired NMR spectra show the prevalent metabolites found in mammalian cells. The volumes of the detected samples range from 25 nL to 1 nL (or 50000 to 1800 cells). With an extended set-up that provides fluid inlets and outlets to the microprobe, the cells can be perfused within the NMR-magnet while constantly taking NMR spectra. Perfusion of the cells opens the way to increased cell viability for long acquisitions or to analysis of the cells response to environmental change

    It’s RAINing : Remotely Accessible Instruments in Nanotechnology to Promote Student Success

    Get PDF
    Remotely Accessible Instruments in Nanotechnology (RAIN) is a community of educators that aims to bring advanced technologies into K-12 and college classrooms via remote access. RAIN\u27s mission is to facilitate the study of nanoscale science by lowering barriers for instructors to deliver relevant educational activities for younger students interested in learning about nanotechnology across traditional STEM fields. Additionally, RAIN engages the next generation STEM workforce with a connection to experts, tools and institutions where cutting-edge research is being performed. This resource is particularly vital for underrepresented and minority students, especially those attending institutions that cannot provide on-site access to advanced technologies. Currently the RAIN network consists of ten sites across the United States and offers its services free of charge to make STEM education more accessible to the students that would otherwise not encounter these resources. Data shows that RAIN is effective at fostering a passion for the sciences when used in K-12 thru college curricula

    Efficacy of an Extracorporeal Endotoxin Adsorber System during Hyperdynamic Porcine Endotoxemia

    Get PDF
    Background: Endotoxemia is a crucial factor in the pathogenesis of sepsis. Elimination of endotoxin is aimed at the reduction of sepsis-related morbidity and lethality. The objective of this study was to examine the impact of an endotoxin adsorber on hemodynamics, O2 exchange and metabolism during resuscitated porcine endotoxemia. Methods: Twenty pigs were randomized into 2 intervention groups (n = 7 each) and 1 control group (n = 6). Endotoxemia was induced by continuous intravenous application of lipopolysaccharide for 8 h. Adsorber therapy was started at the same time as the induction of endotoxemia or 2 h later. An extracorporeal hemoperfusion device using immobilized human serum albumin for endotoxin adsorption was used. Results: Hemodynamic, metabolic and acid-base parameters, as well as the kinetics of interleukin (IL)-6, IL-8, IL-10 and tumor necrosis factor-α, were characteristic for endotoxic shock. Endotoxin plasma levels were low (arterial, hepatic and portal vein). None of the parameters were significantly influenced by the adsorber system. Conclusion: Despite typical clinical signs of endotoxemia, the adsorber system had no significant effect on hemodynamic, metabolic and acid-base parameters during endotoxic shock. The reasons for the absence of an effect are elusive; however, failure of the method per se or exceeded capacity of the adsorber cannot be excluded

    Androgen-regulated transcription of ESRP2 drives alternative splicing patterns in prostate cancer

    Get PDF
    Prostate is the most frequent cancer in men. Prostate cancer progression is driven by androgen steroid hormones, and delayed by androgen deprivation therapy (ADT). Androgens control transcription by stimulating androgen receptor (AR) activity, yet also control pre-mRNA splicing through less clear mechanisms. Here we find androgens regulate splicing through AR-mediated transcriptional control of the epithelial-specific splicing regulator ESRP2. Both ESRP2 and its close paralog ESRP1 are highly expressed in primary prostate cancer. Androgen stimulation induces splicing switches in many endogenous ESRP2-controlled mRNA isoforms, including splicing switches correlating with disease progression. ESRP2 expression in clinical prostate cancer is repressed by ADT, which may thus inadvertently dampen epithelial splice programmes. Supporting this, treatment with the AR antagonist bicalutamide (Casodex) induced mesenchymal splicing patterns of genes including FLNB and CTNND1. Our data reveals a new mechanism of splicing control in prostate cancer with important implications for disease progression.This article is freely available via Open Access. Click on the Publisher URL to access the full-text via the publisher's site
    • …
    corecore