84 research outputs found

    Radiographic, Biomechanical and Histological Characterization of Femoral Fracture Healing in Aged CD-1 Mice

    Get PDF
    With a gradually increasing elderly population, the treatment of geriatric patients represents a major challenge for trauma and reconstructive surgery. Although, it is well established that aging affects bone metabolism, it is still controversial if aging impairs bone healing. Accordingly, we investigated fracture healing in young adult (3–4 months) and aged (16–18 months) CD-1 mice using a stable closed femoral fracture model. Bone healing was analyzed by radiographic, biomechanical and histological analysis at 1, 2, 3, 4 and 5 weeks after fracture. Our results demonstrated an increased callus diameter to femoral diameter ratio in aged animals at later time points of fracture healing when compared to young adult mice. Moreover, our biomechanical analysis revealed a significantly decreased bending stiffness at 3 and 4 weeks after fracture in aged animals. In contrast, at 5 weeks after fracture, the analysis showed no significant difference in bending stiffness between the two study groups. Additional histological analysis showed a delayed endochondral ossification in aged animals as well as a higher amounts of fibrous tissue at early healing time points. These findings indicate a delayed process of callus remodeling in aged CD-1 mice, resulting in a delayed fracture healing when compared to young adult animals. However, the overall healing capacity of the fractured femora was not affected by aging

    Quercetin Protects Primary Human Osteoblasts Exposed to Cigarette Smoke through Activation of the Antioxidative Enzymes HO-1 and SOD-1

    Get PDF
    Smokers frequently suffer from impaired fracture healing often due to poor bone quality and stability. Cigarette smoking harms bone cells and their homeostasis by increased formation of reactive oxygen species (ROS). The aim of this study was to investigate whether Quercetin, a naturally occurring antioxidant, can protect osteoblasts from the toxic effects of smoking. Human osteoblasts exposed to cigarette smoke medium (CSM) rapidly produced ROS and their viability decreased concentration- and time-dependently. Co-, pre- and postincubation with Quercetin dose-dependently improved their viability. Quercetin increased the expression of the anti-oxidative enzymes heme-oxygenase- (HO-) 1 and superoxide-dismutase- (SOD-) 1. Inhibiting HO-1 activity abolished the protective effect of Quercetin. Our results demonstrate that CSM damages human osteoblasts by accumulation of ROS. Quercetin can diminish this damage by scavenging the radicals and by upregulating the expression of HO-1 and SOD-1. Thus, a dietary supplementation with Quercetin could improve bone matter, stability and even fracture healing in smokers

    Diclofenac, a NSAID, delays fracture healing in aged mice

    Get PDF
    Nonsteroidal anti-inflammatory drugs (NSAIDs), such as diclofenac, belong to the most prescribed analgesic medication after traumatic injuries. However, there is accumulating evidence that NSAIDs impair fracture healing. Because bone regeneration in aged patients is subject to significant changes in cell differentiation and proliferation as well as a markedly altered pharmacological action of drugs, we herein analyzed the effects of diclofenac on bone healing in aged mice using a stable closed femoral facture model. Thirty-three mice (male n = 14, female n = 19) received a daily intraperitoneal injection of diclofenac (5 mg/kg body weight). Vehicletreated mice (n = 29; male n = 13, female n = 16) served as controls. Fractured mice femora were analyzed by means of X-ray, biomechanics, micro computed tomography (ÎŒCT), histology and Western blotting. Biomechanical analyses revealed a significantly reduced bending stiffness in diclofenac-treated animals at 5 weeks after fracture when compared to vehicle-treated controls. Moreover, the callus tissue in diclofenac-treated aged animals exhibited a significantly reduced amount of bone tissue and higher amounts of fibrous tissue. Further histological analyses demonstrated less lamellar bone after diclofenac treatment, indicating a delay in callus remodeling. This was associated with a decreased number of osteoclasts and an increased expression of osteoprotegerin (OPG) during the early phase of fracture healing. These findings indicate that diclofenac delays fracture healing in aged mice by affecting osteogenic growth factor expression and bone formation as well as osteoclast activity and callus remodeling

    Synthesis and Characterization of a Novel Biocompatible Alloy, ti-nb-zr-ta-sn

    Full text link
    Many current-generation biomedical implants are fabricated from the Ti-6Al-4V alloy because it has many attractive properties, such as low density and biocompatibility. However, the elastic modulus of this alloy is much larger than that of the surrounding bone, leading to bone resorption and, eventually, implant failure. In the present study, we synthesized and performed a detailed analysis of a novel low elastic modulus Ti-based alloy (Ti-28Nb-5Zr-2Ta-2Sn (TNZTS alloy)) using a variety of methods, including scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and tensile test. Additionally, the in vitro biocompatibility of the TNZTS alloy was evaluated using SCP-1, SaOs-2, and THP-1 cell lines and primary human osteoblasts. Compared to Ti-6Al-4V, the elastic modulus of TNZTS alloy was significantly lower, while measures of its in vitro biocompatibility are comparable. O2 plasma treatment of the surface of the alloy significantly increased its hydrophilicity and, hence, its in vitro biocompatibility. TNZTS alloy specimens did not induce the release of cytokines by macrophages, indicating that such scaffolds would not trigger inflammatory responses. The present results suggest that the TNZTS alloy may have potential as an alternative to Ti-6Al-4V. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Funding: The experimental work was funded by the State Assignment (Russian Federation, Grant No. 0836-2020-0020) and DAAD together with the Ministry of Education and Science of the Russian Federation within the Michael Lomonosov Program (project No. 57447934)

    Advancing urban transitions and transformations research

    Get PDF
    Urban transitions and transformations research fosters a dialogue between sustainability transitions theory an inter- and transdisciplinary research on urban change. As a field, urban transitions and transformations research encompasses plural analytical and conceptual perspectives. In doing so, this field opens up sustainability transitions research to new communities of practice in urban environments, including mayors, transnational municipal networks, and international organizations

    Sustainable development and human resource management. A science mapping approach

    Get PDF
    FinanciaciĂłn ECO2017-82208-PThis manuscript presents a systematic review of "sustainable human resource man-agement"(HRM), highlighting its major themes and the evolution and tendenciesobserved in this field. It contributes to the development of this relatively new topic,offering a critical evaluation and identifying the highest impact research strands.The Web of Science database returned 111 documents spanning the period 1997-2018, and a conceptual science mapping analysis based on co-word bibliographic net-works was developed, using SciMAT as an analytical tool. The motor themes (welldeveloped and important for the structure of the discipline) in the field of sustainableHRM areenvironmental management,socially responsible HRM, andturnover.Employeeengagementis a specialised theme (well developed but less important for the struc-ture of the research field),human resource practicesis a basic or transversal theme(important for the discipline but not developed), andsustainable leadershipandenvi-ronmental performanceare emerging themes (both weakly developed and marginalto the field).Management and Marketing Department (University of Pablo de Olavide

    Cognitive frames in corporate sustainability: managerial sensemaking with paradoxical and business case frames

    Get PDF
    Corporate sustainability confronts managers with tensions between complex economic, environmental, and social issues. Drawing on the literature on managerial cognition, corporate sustainability, and strategic paradoxes, we develop a cognitive framing perspective on corporate sustainability. We propose two cognitive frames—a business case frame and a paradoxical frame—and explore how differences between them in cognitive content and structure influence the three stages of the sensemaking process—that is, managerial scanning, interpreting, and responding with regard to sustainability issues. We explain how the two frames lead to differences in the breadth and depth of scanning, differences in issue interpretations in terms of sense of control and issue valence, and different types of responses that managers consider with regard to sustainability issues. By considering alternative cognitive frames, our argument contributes to a better understanding of managerial decision making regarding ambiguous sustainability issues, and it develops the underlying cognitive determinants of the stance that managers adopt on sustainability issues. This argument offers a cognitive explanation for why managers rarely push for radical change when faced with complex and ambiguous issues, such as sustainability, that are characterized by conflicting yet interrelated aspects

    5-azacytidine improves the osteogenic differentiation potential of aged human adipose-derived mesenchymal stem cells by DNA demethylation

    Get PDF
    The therapeutic value of adipose-derived mesenchymal stem cells (Ad-MSCs) for bone regeneration is critically discussed. A possible reason for reduced osteogenic potential may be an age-related deterioration of the Ad-MSCs. In long term in vitro culture, epigenomic changes in DNA methylation are known to cause gene silencing, affecting stem cell growth as well as the differentiation potential. In this study, we observed an age-related decline in proliferation of primary human Ad-MSCs. Decreased Nanog, Oct4 and Lin28A and increased Sox2 gene-expression was accompanied by an impaired osteogenic differentiation potential of Ad-MSCs isolated from old donors (>60 a) as compared to Ad-MSCs isolated from younger donors (<45 a). 5-hydroxymethylcytosine (5 hmC) and 5-methylcytonsine (5 mC) distribution as well as TET gene expression were evaluated to assess the evidence of active DNA demethylation. We observed a decrease of 5 hmC in Ad-MSCs from older donors. Incubation of these cells with 5-Azacytidine induced proliferation and improved the osteogenic differentiation potential in these cells. The increase in AP activity and matrix mineralization was associated with an increased presence of 5 hmC as well as with an increased TET2 and TET3 gene expression. Our data show, for the first time, a decrease of DNA hydroxymethylation in Ad-MSCs which correlates with donor-age and that treatment with 5-Azacytidine provides an approach which could be used to rejuvenate Ad-MSCs from aged donors
    • 

    corecore