174 research outputs found

    Circulating Progenitor Cell Count for Cardiovascular Risk Stratification: A Pooled Analysis

    Get PDF
    Background: Circulating progenitor cells (CPC) contribute to the homeostasis of the vessel wall, and a reduced CPC count predicts cardiovascular morbidity and mortality. We tested the hypothesis that CPC count improves cardiovascular risk stratification and that this is modulated by low-grade inflammation. Methodology/Principal Findings: We pooled data from 4 longitudinal studies, including a total of 1,057 patients having CPC determined and major adverse cardiovascular events (MACE) collected. We recorded cardiovascular risk factors and high-sensitive C-reactive protein (hsCRP) level. Risk estimates were derived from Cox proportional hazard analyses. CPC count and/or hsCRP level were added to a reference model including age, sex, cardiovascular risk factors, prevalent CVD, chronic renal failure (CRF) and medications. The sample was composed of high-risk individuals, as 76.3% had prevalent CVD and 31.6% had CRF. There were 331 (31.3%) incident MACE during an average 1.7±1.1 year follow-up time. CPC count was independently associated with incident MACE even after correction for hsCRP. According to C-statistics, models including CPC yielded a non-significant improvement in accuracy of MACE prediction. However, the integrated discrimination improvement index (IDI) showed better performance of models including CPC compared to the reference model and models including hsCRP in identifying MACE. CPC count also yielded significant net reclassification improvements (NRI) for CV death, non-fatal AMI and other CV events. The effect of CPC was independent of hsCRP, but there was a significant more-than-additive interaction between low CPC count and raised hsCRP level in predicting incident MACE. Conclusions/Significance: In high risk individuals, a reduced CPC count helps identifying more patients at higher risk of MACE over the short term, especially in combination with a raised hsCRP level

    Rat Adipose Tissue-Derived Stem Cells Transplantation Attenuates Cardiac Dysfunction Post Infarction and Biopolymers Enhance Cell Retention

    Get PDF
    Background: Cardiac cell transplantation is compromised by low cell retention and poor graft viability. Here, the effects of co-injecting adipose tissue-derived stem cells (ASCs) with biopolymers on cell cardiac retention, ventricular morphometry and performance were evaluated in a rat model of myocardial infarction (MI). Methodology/Principal Findings: (99m)Tc-labeled ASCs (1 x 10(6) cells) isolated from isogenic Lewis rats were injected 24 hours post-MI using fibrin a, collagen (ASC/C), or culture medium (ASC/M) as vehicle, and cell body distribution was assessed 24 hours later by gamma-emission counting of harvested organs. ASC/F and ASC/C groups retained significantly more cells in the myocardium than ASC/M (13.8+/-2.0 and 26.8+/-2.4% vs. 4.8+/-0.7%, respectively). Then, morphometric and direct cardiac functional parameters were evaluated 4 weeks post-MI cell injection. Left ventricle (LV) perimeter and percentage of interstitial collagen in the spare myocardium were significantly attenuated in all ASC-treated groups compared to the non-treated (NT) and control groups (culture medium, fibrin, or collagen alone). Direct hemodynamic assessment under pharmacological stress showed that stroke volume (SV) and left ventricle end-diastolic pressure were preserved in ASC-treated groups regardless of the vehicle used to deliver ASCs. Stroke work (SW), a global index of cardiac function, improved in ASC/M while it normalized when biopolymers were co-injected with ASCs. A positive correlation was observed between cardiac ASCs retention and preservation of SV and improvement in SW post-MI under hemodynamic stress. Conclusions: We provided direct evidence that intramyocardial injection of ASCs mitigates the negative cardiac remodeling and preserves ventricular function post-MI in rats and these beneficial effects can be further enhanced by administrating co-injection of ASCs with biopolymers.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)[01/0009-0]Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)[05/54695-3]Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)[04/06784-4]Ministerio da Ciencia e Tecnologia/Conselho Nacional de Desenvolvimento Cientifico e Tecnologico/Ministerio da Saude/Departamento Ciencia e Tecnologia (MCT/CNPq/MS/DECIT)[552324/20005-1]Ministerio da Ciencia e Tecnologia/Conselho Nacional de Desenvolvimento Cientifico e Tecnologico/Ministerio da Saude/Departamento Ciencia e Tecnologia (MCT/CNPq/MS/DECIT)[10120104096700]CNPq[141276/2004-5

    Endothelial Progenitor Cell Number and Colony-forming Capacity in Overweight and Obese Adults

    Get PDF
    OBJECTIVE: To investigate whether adiposity influences endothelial progenitor cell (EPC) number and colony-forming capacity.DESIGN: Cross-sectional study of normal weight, overweight and obese adult humans.PARTICIPANTS: Sixty-seven sedentary adults (aged 45-65 years): 25 normal weight (body mass index (BMI) or=30 kg/m(2); 18 males/6 females). All participants were non-smokers and free of overt cardiometabolic disease.MEASUREMENTS: Peripheral blood samples were collected and circulating EPC number was assessed by flow cytometry. Putative EPCs were defined as CD45(-)/CD34(+)/VEGFR-2(+)/CD133(+) or CD45(-)/CD34(+) cells. EPC colony-forming capacity was measured in vitro using a colony-forming unit (CFU) assay.RESULTS: Number of circulating putative EPCs (either CD45(-)/CD34(+)/VEGFR-2(+)/CD133(+) or CD45(-)/CD34(+) cells) was lower (P\u3c0.05) in obese (0.0007±0.0001%; 0.050±0.006%) compared with overweight (0.0016±0.0004%; 0.089±0.019%) and normal weight (0.0015±0.0003%; 0.082±0.008%) adults. There were no differences in EPC number between the overweight and normal weight groups. EPC colony-formation was significantly less in the obese (6±1) and overweight (4±1) compared with normal weight (9±2) adults.CONCLUSION: These results indicate that: (1) the number of circulating EPCs is lower in obese compared with overweight and normal weight adults; and (2) EPC colony-forming capacity is blunted in overweight and obese adults compared with normal weight adults. Impairments in EPC number and function may contribute to adiposity-related cardiovascular risk

    Combinatorial Polymer Electrospun Matrices Promote Physiologically-Relevant Cardiomyogenic Stem Cell Differentiation

    Get PDF
    Myocardial infarction results in extensive cardiomyocyte death which can lead to fatal arrhythmias or congestive heart failure. Delivery of stem cells to repopulate damaged cardiac tissue may be an attractive and innovative solution for repairing the damaged heart. Instructive polymer scaffolds with a wide range of properties have been used extensively to direct the differentiation of stem cells. In this study, we have optimized the chemical and mechanical properties of an electrospun polymer mesh for directed differentiation of embryonic stem cells (ESCs) towards a cardiomyogenic lineage. A combinatorial polymer library was prepared by copolymerizing three distinct subunits at varying molar ratios to tune the physicochemical properties of the resulting polymer: hydrophilic polyethylene glycol (PEG), hydrophobic poly(ε-caprolactone) (PCL), and negatively-charged, carboxylated PCL (CPCL). Murine ESCs were cultured on electrospun polymeric scaffolds and their differentiation to cardiomyocytes was assessed through measurements of viability, intracellular reactive oxygen species (ROS), α-myosin heavy chain expression (α-MHC), and intracellular Ca2+ signaling dynamics. Interestingly, ESCs on the most compliant substrate, 4%PEG-86%PCL-10%CPCL, exhibited the highest α-MHC expression as well as the most mature Ca2+ signaling dynamics. To investigate the role of scaffold modulus in ESC differentiation, the scaffold fiber density was reduced by altering the electrospinning parameters. The reduced modulus was found to enhance α-MHC gene expression, and promote maturation of myocyte Ca2+ handling. These data indicate that ESC-derived cardiomyocyte differentiation and maturation can be promoted by tuning the mechanical and chemical properties of polymer scaffold via copolymerization and electrospinning techniques

    Meiotic Recombination Intermediates Are Resolved with Minimal Crossover Formation during Return-to-Growth, an Analogue of the Mitotic Cell Cycle

    Get PDF
    Accurate segregation of homologous chromosomes of different parental origin (homologs) during the first division of meiosis (meiosis I) requires inter-homolog crossovers (COs). These are produced at the end of meiosis I prophase, when recombination intermediates that contain Holliday junctions (joint molecules, JMs) are resolved, predominantly as COs. JM resolution during the mitotic cell cycle is less well understood, mainly due to low levels of inter-homolog JMs. To compare JM resolution during meiosis and the mitotic cell cycle, we used a unique feature of Saccharomyces cerevisiae, return to growth (RTG), where cells undergoing meiosis can be returned to the mitotic cell cycle by a nutritional shift. By performing RTG with ndt80 mutants, which arrest in meiosis I prophase with high levels of interhomolog JMs, we could readily monitor JM resolution during the first cell division of RTG genetically and, for the first time, at the molecular level. In contrast to meiosis, where most JMs resolve as COs, most JMs were resolved during the first 1.5–2 hr after RTG without producing COs. Subsequent resolution of the remaining JMs produced COs, and this CO production required the Mus81/Mms4 structure-selective endonuclease. RTG in sgs1-ΔC795 mutants, which lack the helicase and Holliday junction-binding domains of this BLM homolog, led to a substantial delay in JM resolution; and subsequent JM resolution produced both COs and NCOs. Based on these findings, we suggest that most JMs are resolved during the mitotic cell cycle by dissolution, an Sgs1 helicase-dependent process that produces only NCOs. JMs that escape dissolution are mostly resolved by Mus81/Mms4-dependent cleavage that produces both COs and NCOs in a relatively unbiased manner. Thus, in contrast to meiosis, where JM resolution is heavily biased towards COs, JM resolution during RTG minimizes CO formation, thus maintaining genome integrity and minimizing loss of heterozygosity

    Endothelial progenitor cells and integrins: adhesive needs

    Get PDF
    In the last decade there have been multiple studies concerning the contribution of endothelial progenitor cells (EPCs) to new vessel formation in different physiological and pathological settings. The process by which EPCs contribute to new vessel formation in adults is termed postnatal vasculogenesis and occurs via four inter-related steps. They must respond to chemoattractant signals and mobilize from the bone marrow to the peripheral blood; home in on sites of new vessel formation; invade and migrate at the same sites; and differentiate into mature endothelial cells (ECs) and/or regulate pre-existing ECs via paracrine or juxtacrine signals. During these four steps, EPCs interact with different physiological compartments, namely bone marrow, peripheral blood, blood vessels and homing tissues. The success of each step depends on the ability of EPCs to interact, adapt and respond to multiple molecular cues. The present review summarizes the interactions between integrins expressed by EPCs and their ligands: extracellular matrix components and cell surface proteins present at sites of postnatal vasculogenesis. The data summarized here indicate that integrins represent a major molecular determinant of EPC function, with different integrin subunits regulating different steps of EPC biology. Specifically, integrin α4β1 is a key regulator of EPC retention and/or mobilization from the bone marrow, while integrins α5β1, α6β1, αvβ3 and αvβ5 are major determinants of EPC homing, invasion, differentiation and paracrine factor production. β2 integrins are the major regulators of EPC transendothelial migration. The relevance of integrins in EPC biology is also demonstrated by many studies that use extracellular matrix-based scaffolds as a clinical tool to improve the vasculogenic functions of EPCs. We propose that targeted and tissue-specific manipulation of EPC integrin-mediated interactions may be crucial to further improve the usage of this cell population as a relevant clinical agent

    Stem Cell Therapy: Pieces of the Puzzle

    Get PDF
    Acute ischemic injury and chronic cardiomyopathies can cause irreversible loss of cardiac tissue leading to heart failure. Cellular therapy offers a new paradigm for treatment of heart disease. Stem cell therapies in animal models show that transplantation of various cell preparations improves ventricular function after injury. The first clinical trials in patients produced some encouraging results, despite limited evidence for the long-term survival of transplanted cells. Ongoing research at the bench and the bedside aims to compare sources of donor cells, test methods of cell delivery, improve myocardial homing, bolster cell survival, and promote cardiomyocyte differentiation. This article reviews progress toward these goals

    Erythropoietin: a multimodal neuroprotective agent

    Get PDF
    The tissue protective functions of the hematopoietic growth factor erythropoietin (EPO) are independent of its action on erythropoiesis. EPO and its receptors (EPOR) are expressed in multiple brain cells during brain development and upregulated in the adult brain after injury. Peripherally administered EPO crosses the blood-brain barrier and activates in the brain anti-apoptotic, anti-oxidant and anti-inflammatory signaling in neurons, glial and cerebrovascular endothelial cells and stimulates angiogenesis and neurogenesis. These mechanisms underlie its potent tissue protective effects in experimental models of stroke, cerebral hemorrhage, traumatic brain injury, neuroinflammatory and neurodegenerative disease. The preclinical data in support of the use of EPO in brain disease have already been translated to first clinical pilot studies with encouraging results with the use of EPO as a neuroprotective agent

    Association between high-density lipoprotein-cholesterol and hypertension in relation to circulating CD34-positive cell levels

    Get PDF
    Background: Although high-density lipoprotein-cholesterol (HDL) level is inversely correlated with cardiovascular events, HDL is also reported to be positively associated with hypertension, which is a known endothelial impairment factor. Since HDL mediates important protective actions on the vascular endothelium by increasing the number of circulating endothelial progenitor cells (CD34-positive cells), the level of circulating CD34-positive cells should influence the association between HDL and hypertension. Methods: To investigate the association between HDL and hypertension in relation to the level of circulating CD34-positive cells, we conducted a cross-sectional study of 477 elderly men aged 60?69 years who participated in general health checkup. Results: HDL was found to be significantly positively associated with hypertension in subjects with a high level of circulating CD34-positive cells, while no significant association was observed for subjects with low circulating CD34-positive cells. Known cardiovascular risk factors adjusted odds (ORs) and 95% confidence intervals (CIs) of hypertension for increments of one standard deviation (SD) in HDL (13.8 mg/dL) were 1.44 (1.06, 1.96) for subjects with a high level of circulating CD34-positive cells and 0.87 (0.63, 1.19) for subjects with low circulating CD34-positive cells. We also revealed a significant association between HDL level and CD34-positive cell level on hypertension, with fully adjusted p values for the effect of this interaction on hypertension at 0.022. Conclusions: Independent of known cardiovascular risk factors, HDL was found to be positively associated with hypertension in subjects with a high level of circulating CD34-positive cells but not for subjects with low circulating CD34-positive cells
    corecore