302 research outputs found
Recommended from our members
A philosophical approach to entrepreneurial education: a model based on Kantian and Aristotelian thought
In the field of entrepreneurship education, how to develop an effective program to teach entrepreneurship has been widely debated. However, an inductive approach based on analysis of educational program experiences and outcomes has led to mixed conclusions about the appropriate scope and structure of entrepreneurship education. In contrast, we take a deductive approach to develop a comprehensive entrepreneurship education model based on concepts from two schools of philosophical thought: the Kantian debate about freedom versus determinism, and the Aristotelian concepts of praxis and poïesis. These philosophical concepts are related to scope and structure dimensions that delineate the soft (art) and hard (science) of entrepreneurship education, their components and interrelationships. Pedagogies associated with each component as well as integrative pedagogies are identified to guide the development of entrepreneurship education programs and teaching. Theoretical propositions are presented for future research
Lattice QCD as a video game
The speed, bandwidth and cost characteristics of today's PC graphics cards make them an attractive target as general purpose computational platforms. High performance can be achieved also for lattice simulations but the actual implementation can be cumbersome. This paper outlines the architecture and programming model of modern graphics cards for the lattice practitioner with the goal of exploiting these chips for Monte Carlo simulations. Sample code is also given. (c) 2007 Elsevier B.V. All rights reserved
Multi-mass solvers for lattice QCD on GPUs
Graphical Processing Units (GPUs) are more and more frequently used for
lattice QCD calculations. Lattice studies often require computing the quark
propagators for several masses. These systems can be solved using multi-shift
inverters but these algorithms are memory intensive which limits the size of
the problem that can be solved using GPUs. In this paper, we show how to
efficiently use a memory-lean single-mass inverter to solve multi-mass
problems. We focus on the BiCGstab algorithm for Wilson fermions and show that
the single-mass inverter not only requires less memory but also outperforms the
multi-shift variant by a factor of two.Comment: 27 pages, 6 figures, 3 Table
Solving Lattice QCD systems of equations using mixed precision solvers on GPUs
Modern graphics hardware is designed for highly parallel numerical tasks and
promises significant cost and performance benefits for many scientific
applications. One such application is lattice quantum chromodyamics (lattice
QCD), where the main computational challenge is to efficiently solve the
discretized Dirac equation in the presence of an SU(3) gauge field. Using
NVIDIA's CUDA platform we have implemented a Wilson-Dirac sparse matrix-vector
product that performs at up to 40 Gflops, 135 Gflops and 212 Gflops for double,
single and half precision respectively on NVIDIA's GeForce GTX 280 GPU. We have
developed a new mixed precision approach for Krylov solvers using reliable
updates which allows for full double precision accuracy while using only single
or half precision arithmetic for the bulk of the computation. The resulting
BiCGstab and CG solvers run in excess of 100 Gflops and, in terms of iterations
until convergence, perform better than the usual defect-correction approach for
mixed precision.Comment: 30 pages, 7 figure
Sorting signed circular permutations by super short reversals
We consider the problem of sorting a circular permutation by reversals of length at most 2, a problem that finds application in comparative genomics. Polynomial-time solutions for the unsigned version of this problem are known, but the signed version remained open. In this paper, we present the first polynomial-time solution for the signed version of this problem. Moreover, we perform an experiment for inferring distances and phylogenies for published Yersinia genomes and compare the results with the phylogenies presented in previous works.We consider the problem of sorting a circular permutation by reversals of length at most 2, a problem that finds application in comparative genomics. Polynomial-time solutions for the unsigned version of this problem are known, but the signed version rema9096272283FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIORCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO2013/08293-72014/04718-6306730/2012-0; 477692/2012-5; 483370/2013-411th International Symposium on Bioinformatics Research and Application
The Effective Particle-Hole Interaction and the Optical Response of Simple Metal Clusters
Following Sham and Rice [L. J. Sham, T. M. Rice, Phys. Rev. 144 (1966) 708]
the correlated motion of particle-hole pairs is studied, starting from the
general two-particle Greens function. In this way we derive a matrix equation
for eigenvalues and wave functions, respectively, of the general type of
collective excitation of a N-particle system. The interplay between excitons
and plasmons is fully described by this new set of equations. As a by-product
we obtain - at least a-posteriori - a justification for the use of the TDLDA
for simple-metal clusters.Comment: RevTeX, 15 pages, 5 figures in uufiles format, 1 figure avaible from
[email protected]
The Optimal Choice of Trap Type for the Recently Spreading Jewel Beetle Pests Lamprodila festiva and Agrilus sinuatus (Coleoptera, Buprestidae)
BACKGROUND: Two jewel beetle species native to Europe, the cypress jewel beetle, Lamprodila (Palmar, Ovalisia) festiva L. (Buprestidae, Coleoptera), and the sinuate pear tree borer, Agrilus sinuatus Olivier (Buprestidae, Coleoptera), are key pests of ornamental thuja and junipers and of orchard and ornamental rosaceous trees, respectively. Although chemical control measures are available, due to the beetles’ small size, agility, and cryptic lifestyle at the larval stage, efficient tools for their detection and monitoring are missing. Consequently, by the time emerging jewel beetle adults are noticed, the trees are typically significantly damaged.
METHODS: Thus, the aim of this study was to initiate the development of monitoring traps. Transparent, light green, and purple sticky sheets and multifunnel traps were compared in field experiments in Hungary.
RESULTS:
Light green and transparent sticky traps caught more L. festiva and A. sinuatus jewel beetles than non-sticky multifunnel traps, regardless of the larger size of the colored surface of the funnel traps.
CONCLUSIONS: Although light green sticky sheets turned out to be optimal for both species, using transparent sheets can reduce catches of non-target insects. The key to the effectiveness of sticky traps, despite their reduced suitability for quantitative comparisons, may lie in the behavioral responses of the beetles to the optical features of the traps
Light Hadron Masses from Lattice QCD
This article reviews lattice QCD results for the light hadron spectrum. We
give an overview of different formulations of lattice QCD, with discussions on
the fermion doubling problem and improvement programs. We summarize recent
developments in algorithms and analysis techniques, that render calculations
with light, dynamical quarks feasible on present day computer resources.
Finally, we summarize spectrum results for ground state hadrons and resonances
using various actions.Comment: 53 pages, 24 figures, one table; Rev.Mod.Phys. (published version);
v2: corrected typ
Sorting Signed Circular Permutations by Super Short Reversals
International audienceWe consider the problem of sorting a circular permutation by reversals of length at most 2, a problem that finds application in comparative genomics. Polynomial-time solutions for the unsigned version of this problem are known, but the signed version remained open. In this paper, we present the first polynomial-time solution for the signed version of this problem. Moreover, we perform an experiment for inferring distances and phylogenies for published Yersinia genomes and compare the results with the phylogenies presented in previous works
- …