223 research outputs found

    Astrid-2 and ground-based observations of the auroral bulge in the middle of the nightside convection throat

    No full text
    International audienceResults concerning the electrodynamics of the nightside auroral bulge are presented based on simultaneous satellite and ground-based observations. The satellite data include Astrid-2 measurements of electric fields, currents and particles from a midnight auroral oval crossing and Polar UVI images of the large-scale auroral distribution. The ground-based observations include STARE and SuperDARN electric fields and magnetic records from the Greenland and MIRACLE magnetometer network, the latter including stations from northern Scandinavia north to Svalbard. At the time of the Astrid-2 crossing the ground-based data reveal intense electrojet activity, both to the east and west of the Astrid-2 trajectory, related to the Polar observations of the auroral bulge but not necessarily to a typical substorm. The energetic electron fluxes measured by Astrid-2 across the auroral oval were generally weak being consistent with a gap observed in the auroral luminosity distribution. The electric field across the oval was directed westward, intensifying close to the poleward boundary followed by a decrease in the polar cap. The combined observations suggests that Astrid-2 was moving close to the separatrix between the dusk and dawn convection cells in a region of low conductivity. The constant westward direction of the electric field across the oval indicates that current continuity was maintained, not by polarisation electric fields (as in a Cowling channel), but solely by localized up- and downward field-aligned currents in good agreement with the Astrid-2 magnetometer data. The absence of a polarisation electric field and thus of an intense westward closure current between the dawn and dusk convection cells is consistent with the relatively weak precipitation and low conductivity in the convection throat. Thus, the Cowling current model is not adequate for describing the electrodynamics of the nightside auroral bulge treated here

    The dawn and dusk electrojet response to substorm onset

    No full text
    International audienceWe have investigated the time delay between substorm onset and related reactions in the dawn and dusk ionospheric electrojets, clearly separated from the nightside located substorm current wedge by several hours in MLT. We looked for substorm onsets occurring over Greenland, where the onset was identified by a LANL satellite and DMI magnetometers located on Greenland. With this setup the MARIA magnetometer network was located at dusk, monitoring the eastward electrojet, and the IMAGE chain at dawn, for the westward jet. In the first few minutes following substorm onset, sudden enhancements of the electrojets were identified by looking for rapid changes in magnetograms. These results show that the speed of information transfer between the region of onset and the dawn and dusk ionosphere is very high. A number of events where the reaction seemed to preceed the onset were explained by either unfavorable instrument locations, preventing proper onset timing, or by the inner magnetosphere's reaction to the Earthward fast flows from the near-Earth neutral line model. Case studies with ionospheric coherent (SuperDARN) and incoherent (EISCAT) radars have been performed to see whether a convection-induced electric field or enhanced conductivity is the main agent for the reactions in the electrojets. The results indicate an imposed electric field enhancement.Key words: Ionosphere (auroral ionosphere; electric fields and currents) - Magnetospheric physics (storms and substorms

    Effects of Electron Correlation inside Disordered Crystals

    Get PDF
    S.P.K. acknowledges support by the National Academy of Sciences of Ukraine (Project No.0116U002067). Calculations were performed using Latvian Super Cluster (LASC), located in the Center of Excellence at Institute of Solid State Physics, the University of Latvia, which is supported by European Union Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-Teaming. Phase two under Grant Agreement No. 739508, project CAMART2.We propose a novel approach for characterising the electron spectrum of disordered crystals constructed from a Hamiltonian of electrons as well as phonons and a diagram approach for Green’s function. The system’s electronic states were modelled by means of the multi‐band, tight-binding approach. The system’s Hamiltonian is described based on the electron wave functions at the field of the atom nucleus. Our novel approach incorporates the long‐range Coulomb interplay of electrons located in different lattice positions. Explicit interpretations of Green’s functions are derived using a diagram method.Equations are obtained for the vertex components for the mass operators of the electron–electron as well aselectron–phonon interplays. A system of equations for the spectrum of elementary excitations in the crystal is obtained, in which the vertex components for the mass operators of electron–electron as well as electron–phonon interplays are renormalised. Thismakes it possible to perform numerical computationsfor the system’s energy spectrum with a predetermined accuracy. In contrast to other approaches in which electron correlations are only taken into account in the limiting cases of an infinitely large and infinitesimal electron density, in this method, electron correlations are described in the general case of an arbitrary density. We obtained the cluster expansion of the density of states (DOS) of the disordered systems. We demon-strate that the addition of the electron‐scattering mechanismsto the clusters is decreasing. This hap-pens due to a growing number of positions in the cluster, which hang ontothe small parameter. The computing exactness is fixed by a small parameter for cluster expansion of Green’s functions of electrons as well as phonons. © 2022 by the authors. Submitted for possible open access.--//-- This is an open access article Kruchinin, S.P.; Eglitis, R.I.; Babak, V.P.; Vyshyvana, I.G.; Repetsky, S.P. Effects of Electron Correlation inside Disordered Crystals. Crystals 2022, 12, 237. https://doi.org/10.3390/cryst12020237; published under the CC BY 4.0 licence.European Union Horizon 2020 Framework Programme H2020‐WIDESPREAD‐01‐2016‐2017‐Teaming; National Academy of Sciences of Ukraine 0116U002067; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART2

    On auroral dynamics observed by HF radar: 1. Equatorward edge of the afternoon-evening diffuse luminosity belt

    No full text
    International audienceObservations and modelling are presented which illustrate the ability of the Finland CUTLASS HF radar to monitor the afternoon-evening equatorward auroral boundary during weak geomagnetic activity. The subsequent substorm growth phase development was also observed in the late evening sector as a natural continuation of the preceding auroral oval dynamics. Over an 8 h period the CUTLASS Finland radar observed a narrow (in range) and persistent region of auroral F- and (later) E-layer echoes which gradually moved equatorward, consistent with the auroral oval diurnal rotation. This echo region corresponds to the subvisual equatorward edge of the diffuse luminosity belt (SEEL) and the ionospheric footprint of the inner boundary of the electron plasma sheet. The capability of the Finland CUTLASS radar to monitor the E-layer SEEL-echoes is a consequence of the nearly zero E-layer rectilinear aspect angles in a region 5?10° poleward of the radar site. The F-layer echoes are probably the boundary blob echoes. The UHF EISCAT radar was in operation and observed a similar subvisual auroral arc and an F-layer electron density enhancement when it appeared in its antenna beam.Key words: Ionsophere (ionospheric irregularities) · Magnetospheric physics (auroral phenomena; magnetosphere?ionosphere interactions

    Ab initio study of magnetism at the TiO2/LaAlO3 interface

    Get PDF
    In this paper we study the possible relation between the electronic and magnetic structure of the TiO2/LaAlO3 interface and the unexpected magnetism found in undoped TiO2 films grown on LaAlO3_3. We concentrate on the role played by structural relaxation and interfacial oxygen vacancies. LaAlO3 has a layered structure along the (001) direction with alternating LaO and AlO2 planes, with nominal charges of +1 and -1, respectively. As a consequence of that, an oxygen deficient TiO2 film with anatase structure will grow preferently on the AlO2 surface layer. We have therefore performed ab-initio calculations for superlattices with TiO2/AlO2 interfaces with interfacial oxygen vacancies. Our main results are that vacancies lead to a change in the valence state of neighbour Ti atoms but not necessarily to a magnetic solution and that the appearance of magnetism depends also on structural details, such as second neighbor positions. These results are obtained using both the LSDA and LSDA+U approximations.Comment: Accepted for publication in Journal of Materials Scienc

    Substorm observations in the early morning sector with Equator-S and Geotail

    No full text
    International audienceData from Equator-S and Geotail are used to study the dynamics of the plasma sheet observed during a substorm with multiple intensifications on 25 April 1998, when both spacecraft were located in the early morning sector (03?04 MLT) at a radial distance of 10?11 RE. In association with the onset of a poleward expansion of the aurora and the westward electrojet in the premidnight and midnight sector, both satellites in the morning sector observed plasma sheet thinning and changes toward a more tail-like field configuration. During the subsequent poleward expansion in a wider local time sector (20?04 MLT), on the other hand, the magnetic field configuration at both satellites changed into a more dipolar configuration and both satellites encountered again the hot plasma sheet. High-speed plasma flows with velocities of up to 600 km/s and lasting 2?5 min were observed in the plasma sheet and near its boundary during this plasma sheet expansion. These high-speed flows included significant dawn-dusk flows and had a shear structure. They may have been produced by an induced electric field at the local dipolarization region and/or by an enhanced pressure gradient associated with the injection in the midnight plasma sheet
    • 

    corecore