505 research outputs found

    Thermal shape fluctuation effects in the description of hot nuclei

    Full text link
    The behavior of several nuclear properties with temperature is analyzed within the framework of the Finite Temperature Hartree-Fock-Bogoliubov (FTHFB) theory with the Gogny force and large configuration spaces. Thermal shape fluctuations in the quadrupole degree of freedom, around the mean field solution, are taken into account with the Landau prescription. As representative examples the nuclei 164^{164}Er, 152^{152}Dy and 192^{192}Hg are studied. Numerical results for the superfluid to normal and deformed to spherical shape transitions are presented. We found a substantial effect of the fluctuations on the average value of several observables. In particular, we get a decrease in the critical temperature (TcT_c) for the shape transition as compared with the plain FTHFB prediction as well as a washing out of the shape transition signatures. The new values of TcT_c are closer to the ones found in Strutinsky calculations and with the Pairing Plus Quadrupole model Hamiltonian.Comment: 17 pages, 8 Figure

    Nuclear Halos and Drip Lines in Symmetry-Conserving Continuum HFB Theory

    Full text link
    We review the properties of nuclear halos and nuclear skins in drip line nuclei in the framework of the spherical Hartree-Fock-Bogoliubov theory with continuum effects and projection on good particle number with the Gogny force. We first establish the position of the un-projected HFB drip lines for the two most employed parametrizations of the Gogny force and show that the use of finite-range interactions leads almost always to small-sized halos, even in the least bound nuclei, which is in agreement with most mean-field predictions. We also discuss the size of the neutron skin at the drip line and its relation to neutron asymmetry. The impact of particle-number projection and its conceptual consequences near the drip line are analyzed in detail. In particular, we discuss the role of the chemical potential in a projected theory and the criteria required to define the drip line. We show that including particle number projection can shift the latter, in particular near closed shells. We notice that, as a result, the size of the halo can be increased due to larger pairing correlations. However, combining the most realistic pairing interaction, a proper treatment of the continuum and particle number projection does not permit to reproduce the very large halos observed in very light nuclei.Comment: Re-submitted to Phys. Rev. C after Referee's review. Layout of figures changed to cope with editor's requirement

    Microscopic study of 240Pu, mean-field and beyond

    Full text link
    The influence of exact angular-momentum projection and configuration mixing on properties of a heavy, well-deformed nucleus is discussed for the example of Pu240. Starting from a self-consistent model using Skyrme interactions, we analyze the resulting modifications of the deformation energy, the fission barrier height, the excitation energy of the superdeformed minimum associated with the fission isomer, the structure of the lowest rotational bands with normal deformation and superdeformation, and the corresponding quadrupole moments and transition moments. We present results obtained with the Skyrme interactions SLy4 and SLy6, which have slightly different surface tensions.Comment: 7 pages REVTEX4, 4 figures. accepted for publication in Phys. Rev.

    Triaxial Angular Momentum Projection and Configuration Mixing calculations with the Gogny force

    Full text link
    We present the first implementation in the (β,γ)(\beta,\gamma) plane of the generator coordinate method with full triaxial angular momentum and particle number projected wave functions using the Gogny force. Technical details about the performance of the method and the convergence of the results both in the symmetry restoration and the configuration mixing parts are discussed in detail. We apply the method to the study of 24^{24}Mg, the calculated energies of excited states as well as the transition probabilities are compared to the available experimental data showing a good overall agreement. In addition, we present the RVAMPIR approach which provides a good description of the ground and gamma bands in the absence of strong mixing.Comment: 40 pages,14 figure

    Shape coexistence in neutron-deficient Kr isotopes: Constraints on the single-particle spectrum of self-consistent mean-field models from collective excitations

    Get PDF
    We discuss shape coexistence in the neutron-deficient Kr72-Kr78 isotopes in the framework of configuration mixing calculations of particle-number and angular-momentum projected axial mean-field states obtained from self-consistent calculations with the Skyrme interaction SLy6 and a density-dependent pairing interaction. While our calculation reproduces qualitatively and quantitatively many of the global features of these nuclei, such as coexistence of prolate and oblate shapes, their strong mixing at low angular momentum, and the deformation of collective bands, the ordering of our calculated low-lying levels is at variance with experiment. We analyse the role of the single-particle spectrum of the underlying mean-field for the spectrum of collective excitations.Comment: accepted for publication in Phys. Rev.

    Approximate particle number projection for finite range density dependent forces

    Get PDF
    The Lipkin-Nogami method is generalized to deal with finite range density dependent forces. New expressions are derived and realistic calculations with the Gogny force are performed for the nuclei 164^{164}Er and 168^{168}Er. The sharp phase transition predicted by the mean field approximation is washed out by the Lipkin-Nogami approach; a much better agreement with the experimental data is reached with the new approach than with the Hartree-Fock_Bogoliubov one, specially at high spins.Comment: 5 pages, RevTeX 3.0, 3 postscript figures included using uufiles. Submitted to Phys. Rev. Let

    Global study of quadrupole correlation effects

    Full text link
    We discuss the systematics of ground-state quadrupole correlations of binding energies and mean-square charge radii for all even-even nuclei, from O16 up to the superheavies, for which data are available. To that aim we calculate their correlated J=0 ground state by means of the angular-momentum and particle-number projected generator coordinate method, using the axial mass quadrupole moment as the generator coordinate and self-consistent mean-field states only restricted by axial, parity, and time-reversal symmetries. The calculation is performed within the framework of a non-relativistic self-consistent mean-field model using the same non-relativistic Skyrme interaction SLy4 and a density-dependent pairing force to generate the mean-field configurations and mix them. (See the paper for the rest of the abstract).Comment: 28 pages revtex, 29 eps figures (2 of which in color), 10 tables. submitted to Phys. Rev.

    On the Solution of the Number-Projected Hartree-Fock-Bogoliubov Equations

    Full text link
    The numerical solution of the recently formulated number-projected Hartree-Fock-Bogoliubov equations is studied in an exactly soluble cranked-deformed shell model Hamiltonian. It is found that the solution of these number-projected equations involve similar numerical effort as that of bare HFB. We consider that this is a significant progress in the mean-field studies of the quantum many-body systems. The results of the projected calculations are shown to be in almost complete agreement with the exact solutions of the model Hamiltonian. The phase transition obtained in the HFB theory as a function of the rotational frequency is shown to be smeared out with the projection.Comment: RevTeX, 11 pages, 3 figures. To be published in a special edition of Physics of Atomic Nuclei (former Sov. J. Nucl. Phys.) dedicated to the 90th birthday of A.B. Migda

    Fission half-lives of super-heavy nuclei in a microscopic approach

    Full text link
    A systematic study of 160 heavy and super-heavy nuclei is performed in the Hartree-Fock-Bogoliubov approach with the finite range and density dependent Gogny force with the D1S parameter set. We show calculations in several approximations: with axially symmetric and reflexion symmetric wave functions, with axially symmetric and non-reflexion symmetric wave functions and finally some representative examples with triaxial wave functions are also discussed. Relevant properties of the ground state and along the fission path are thoroughly analyzed. Fission barriers, Qα_\alpha-factors and lifetimes with respect to fission and α\alpha-decay as well as other observables are discussed. Larger configuration spaces and more general HFB wave functions as compared to previous studies provide a very good agreement with the experimental data.Comment: 26 pages, 15 figure

    Beyond the relativistic mean-field approximation: configuration mixing of angular momentum projected wave functions

    Get PDF
    We report the first study of restoration of rotational symmetry and fluctuations of the quadrupole deformation in the framework of relativistic mean-field models. A model is developed which uses the generator coordinate method to perform configuration mixing calculations of angular momentum projected wave functions, calculated in a relativistic point-coupling model. The geometry is restricted to axially symmetric shapes, and the intrinsic wave functions are generated from the solutions of the constrained relativistic mean-field + BCS equations in an axially deformed oscillator basis. A number of illustrative calculations are performed for the nuclei 194Hg and 32Mg, in comparison with results obtained in non-relativistic models based on Skyrme and Gogny effective interactions.Comment: 32 pages, 14 figures, submitted to Phys. Rev.
    • …
    corecore