5,056 research outputs found
On the effects of irrelevant boundary scaling operators
We investigate consequences of adding irrelevant (or less relevant) boundary
operators to a (1+1)-dimensional field theory, using the Ising and the boundary
sine-Gordon model as examples. In the integrable case, irrelevant perturbations
are shown to multiply reflection matrices by CDD factors: the low-energy
behavior is not changed, while various high-energy behaviors are possible,
including ``roaming'' RG trajectories. In the non-integrable case, a Monte
Carlo study shows that the IR behavior is again generically unchanged, provided
scaling variables are appropriately renormalized.Comment: 4 Pages RevTeX, 3 figures (eps files
Doping- and size-dependent suppression of tunneling in carbon nanotubes
We study the effect of doping in the suppression of tunneling observed in
multi-walled nanotubes, incorporating as well the influence of the finite
dimensions of the system. A scaling approach allows us to encompass the
different values of the critical exponent measured for the tunneling
density of states in carbon nanotubes. We predict that further reduction of
should be observed in multi-walled nanotubes with a sizeable amount
of doping. In the case of nanotubes with a very large radius, we find a
pronounced crossover between a high-energy regime with persistent
quasiparticles and a low-energy regime with the properties of a one-dimensional
conductor.Comment: 4 pages, 2 figures, LaTeX file, pacs: 71.10.Pm, 71.20.Tx, 72.80.R
Superconductivity in ropes of carbon nanotubes
Recent experimental and theoretical results on intrinsic superconductivity in
ropes of single-wall carbon nanotubes are reviewed and compared. We find strong
experimental evidence for superconductivity when the distance between the
normal electrodes is large enough. This indicates the presence of attractive
phonon-mediated interactions in carbon nanotubes, which can even overcome the
repulsive Coulomb interactions. The effective low-energy theory of rope
superconductivity explains the experimental results on the
temperature-dependent resistance below the transition temperature in terms of
quantum phase slips. Quantitative agreement with only one fit parameter can be
obtained. Nanotube ropes thus represent superconductors in an extreme 1D limit
never explored before.Comment: 19 pages, 9 figures, to appear in special issue of Sol. State Com
Regularization independent of the noise level: an analysis of quasi-optimality
The quasi-optimality criterion chooses the regularization parameter in
inverse problems without taking into account the noise level. This rule works
remarkably well in practice, although Bakushinskii has shown that there are
always counterexamples with very poor performance. We propose an average case
analysis of quasi-optimality for spectral cut-off estimators and we prove that
the quasi-optimality criterion determines estimators which are rate-optimal
{\em on average}. Its practical performance is illustrated with a calibration
problem from mathematical finance.Comment: 18 pages, 3 figure
Transport theory of carbon nanotube Y junctions
We describe a generalization of Landauer-B\"uttiker theory for networks of
interacting metallic carbon nanotubes. We start with symmetric starlike
junctions and then extend our approach to asymmetric systems. While the
symmetric case is solved in closed form, the asymmetric situation is treated by
a mix of perturbative and non-perturbative methods. For N>2 repulsively
interacting nanotubes, the only stable fixed point of the symmetric system
corresponds to an isolated node. Detailed results for both symmetric and
asymmetric systems are shown for N=3, corresponding to carbon nanotube Y
junctions.Comment: submitted to New Journal of Physics, Focus Issue on Carbon Nanotubes,
15 pages, 3 figure
Coulomb drag shot noise in coupled Luttinger liquids
Coulomb drag shot noise has been studied theoretically for 1D interacting
electron systems, which are realized e.g. in single-wall nanotubes. We show
that under adiabatic coupling to external leads, the Coulomb drag shot noise of
two coupled or crossed nanotubes contains surprising effects, in particular a
complete locking of the shot noise in the tubes. In contrast to Coulomb drag of
the average current, the noise locking is based on a symmetry of the underlying
Hamiltonian and is not limited to asymptotically small energy scales.Comment: 4 pages Revtex, accepted for publication in PR
Charging effects in quantum wires
We investigate the role of charging effects in a voltage-biased quantum wire.
Both the finite range of the Coulomb interaction and the long-ranged nature of
the Friedel oscillation imply a finite capacitance, leading to a charging
energy. While observable Coulomb blockade effects are absent for a single
impurity, they are crucial if islands are present. For a double barrier, we
give the resonance condition, fully taking into account the charging of the
island.Comment: 6 Pages RevTeX, no figures, Phys. Rev. B (in press
Coulomb charging energy for arbitrary tunneling strength
The Coulomb energy of a small metallic island coupled to an electrode by a
tunnel junction is investigated. We employ Monte Carlo simulations to determine
the effective charging energy for arbitrary tunneling strength. For small
tunneling conductance, the data agree with analytical results based on a
perturbative treatment of electron tunneling, while for very strong tunneling
recent semiclassical results for large conductance are approached. The data
allow for an identification of the range of validity of various analytical
predictions.Comment: 4 pages REVTeX, incl 3 figures, to appear in Europhys.Let
Current bistability and hysteresis in strongly correlated quantum wires
Nonequilibrium transport properties are determined exactly for an
adiabatically connected single channel quantum wire containing one impurity.
Employing the Luttinger liquid model with interaction parameter , for very
strong interactions g\lapx 0.2, and sufficiently low temperatures, we find an
S-shaped current-voltage relation. The unstable branch with negative
differential conductance gives rise to current oscillations and hysteretic
effects. These non perturbative and non linear features appear only out of
equilibrium.Comment: 4 pages, 1 figur
- …