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We study the effect of doping in the suppression of tunneling observed in multi-walled nanotubes, incorpo-
rating as well the influence of the finite dimensions of the system. A scaling approach allows us to encompass
the different values of the critical exponemtmeasured for the tunneling density of states in carbon nanotubes.
We predict that further reduction ef should be observed in multi-walled nanotubes with a sizable amount of
doping. In the case of nanotubes with a very large radius, we find a pronounced crossover between a high-
energy regime with persistent quasiparticles and a low-energy regime with the properties of a one-dimensional
conductor.
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In recent years there has been much interest in the investance for CN under common experimental conditions. Then,
tigation of the electronic properties of carbon nanotubeghe main effects of the interaction come from scattering pro-
(CN).! The reduced dimensionality of these systems leads teesses with low momentum transfer, in which the repulsive
the appearance of unconventional effects, such as a supprégteraction is enhanced. From a 1D point of view, the Cou-
sion of the tunneling conductance at low energy scales. Thi§mb potential has a logarithmic dependence on the
has been interpreted as a signature of the so-called Lutting@aomenturﬁ
liquid behavior? characterized by the absence of electron
guasiparticles in the spectrum. Evidence of a power-law be- Ve(k)=~(1/27) In(k./K), (H)
havior in the tunneling density of states at low energies has
been obtained from measurements in robdadividual ~ wherek. is a short-distance cutoff, of the order of the inverse
single-walled nanotubeé§SWNT)® and multi-walled nano- of the diameterd in the case of the CN. The momentum
tubes(MWNT).® transferk is only limited in the infrared by the inverse of the

In the Luttinger liquid picture, critical exponents of ob- nanotube lengtih. This means that, for typical experimental
servables like the density of states are not universal and desamples which are about one micron long, the scattering pro-
pend on the interaction strength. In the case of CN, this reeesses with generic momentum transfer have a strength
fers to the ubiquitous Coulomb interaction. However, aabout one order of magnitude below that of the forward-
precise determination of the interaction strength is precludedcattering processes. We will then consider the regime where
by the fact that the electron—electron interaction is actuallyL is several orders of magnitude greater trthnin which
long-ranged, and it can be assimilated to a coupling constanbackscattering and Cooper-pair processes can be safely dis-
only after introducing a suitable infrared cutoff in the singu-regarded in favor of those with forward-scattering probing
lar expression of the one-dimensiondlD) Coulomb the singular character of the repulsive interaction.
potential’® We will actually show that a precise treatment of the long-

Furthermore, the shape of CN becomes relevant in settintange character of the Coulomb interaction allows one to
the strength of the electron correlations. In the case o&ccount for the suppression of the tunneling density of states
MWNT, measurements of the conductance refer usually t@bserved in the MWNT. It has been found that the exponents
the outer layer, whose electronic properties are influenced bfpr the low-energy power-law behavior measured experimen-
the interaction with inner metallic cylindefsAlso, MWNT tally are relatively large, compared to the results obtained in
use to be significantly doped, which leads to the presence af conventional Luttinger liquid descriptiériThis has led to
a large number of subbands at the Fermi |é¥dlhe contri-  the proposal that a nonconventional Coulomb blockade ef-
bution of a large number of modes at low energies has thefect including disorder must be responsible for the low-
an appreciable impact on the enhancement of observablenergy behavior observed in the experiméftShe results
like the tunneling density of states. from our study imply that the long-range character of the

The purpose of the present paper is to study the combine@oulomb interaction has to be taken into account for a com-
effect of the finite length of the electron system, on the oneplete description of the MWNT, as the consequent enhance-
hand, and of the number of subbands at low energies, on theent of the forward-scattering processes provides a comple-
other hand, in the Luttinger liquid description of CN. There mentary way of understanding the relatively large
have been precedent studies devoted to understanding tRappression of the tunneling density of states.
effects of coupling a large number of subbands in one- With this aim, we adopt a renormalization groURG)
dimensional electron systerisThe main difference intro- approach, which is well suited to obtain the energy depen-
duced by our analysis is that we focus on the case of thdence of quantities like the quasiparticle weighin the
long-range Coulomb interaction, which is the relevant in-representation(1) of the potential, the logarithmic depen-
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dence onk leads to an imperfect scaling behavior, making 1 d3k 1
the use of the RG approach not quite appropriate. In order to —:f 3e”"r—z. (7
cure the infrared singularities arising from the long-range r] (2m) k

interaction, we implement a dimensional regularization ofif the interaction is projected onto one spatial dimension, by
the theory, writing forr&allgy all bare quantities slightly away iniegrating for instance the modes in the two transverse di-
from dimensionD=1."= This formal artifact has a real mnensjons, then the Fourier transform has the usual logarith-
physmql meaning since, as we are going to see, the dewa_tmmic dependence on the momentum shown in @&. k. be-

D—1 yields a measure of the finite size of the system, withg the memory that the system keeps of the finite transversal
the limit D—1 corresponding to the case of increasingly size. We choose instead to integrate formally a number 3

long nanotubes. o ) . —D of dimensions, so that the long-range potential gets the
The proposed regularization of the long-range interactionepresentation

provides a sensible description of the low-energy properties

of the electron system, as the interacting theory remains scale 1 dPk 1 C(D)
invariant, up to logarithmic corrections, at any dimension W: S,
aboveD=1. Let us consider the case of a generic two- (27m) K]

component electron field (r) with linear dispersion and \yherec(D)=T((D—-1)/2)/(2y7)3 P. In the limit D—1,

subject to the long-range Coulomb interaction. We can writghe expression of the potential in momentum space becomes
the action at general dimensi@in the form

®

S=fdtj d®r WH(r)(id+iveo- V)W(r) W o ———In([k])+---]. 9

c(D) 1( 1
D—1

1/(D—1) corresponds actually to the logarithm of the short-
distance cutofk.. It may seem at first glance that this rela-
L , tion is not precisely defined, sindg is a dimensionful pa-
] v (rH)w(r’), (2 rameter. This ambiguity is however resolved in the
framework of the RG, in which one predicts the behavior of
where theo; matrices are defined formally byo;, o} the observables upon changes in the scale. As long as the
=24 . Under a change in the scaleof the energy variables momenta are scaled down to zero in order to reach the low-
in the model, energy limit of the theory, the quantity D(—1) stands for
the logarithm of the ratio between the highest and the lowest
£—Seg, (3 momentum attained in the scaling procedure. The latter is
constrained by the length of the electron system, which acts
as an infrared cutoff. Thus, the dimensionless quantity
ts 1t (4) 1/(D—1) has to be traded for the logarithm of the length
of the system, measured in units of the finite nanotube diam-
The requirement of scale invariance for the kinetic term ineterd. This argument makes clear that such an equivalence
Eq. (2) dictates the transformation rules has asymptotic character, and that it must hold provided that
L>d>0.
r (5 In order to proceed with the RG program, we write then
the Hamiltonian for the linear branches of CN in the form

Expression9) shows, after comparison with EffL), that
—ezf dtf dDrf dPr’ ¥t (r)
1

XW(r)

we must have accordingly

r—s?t

W(r)—sP?¥(r). (6)

Eclvg dQ
The important point is that the interaction term in the H=vg>, dp|p|Dflf ——= W, (p) PV 40(P)
action(2) remains scale invariant under the scaling transfor- ar JO (2m)
mation(3)—(6). It can be checked that additional interactions E 40 o(D)
mediated by a local potential or with higher content of elec- +ezf ¢ de|p|D—lj o(p) p(—p),
tron fields lead to terms scaling with positive powers ofshe 0 (2m)P |p|P~t
factor, therefore being irrelevant in the low-energy limit (10)
—0. The same applies to terms accounting for higher-order
corrections to the linear dispersion relation. This means thawvherep(p) are density operators made of the electron fields
the model given at the classical level by Ef) is a good WV ,,(p), with « labeling the Fermi point and- the spin
starting point to study the low-energy properties of theprojection. The sum in Eq10) runs then over the usual four
theory at the quantum level, since it is not going to be permodes present in a single-walled nanotube, but it may in-
turbed by the appearance of additional interactions that maglude also the contribution from a large number of subbands
grow large in the low-energy limit. in the case of a doped multi-walled nanotube.

The Coulomb potential fif] can be represented in three ~ We focus on the scaling properties of the model as the
spatial dimensions as the Fourier transform of the propagatanergy cutoffg. is lowered, when a large numbhsrof sub-
1/K2, bands contribute to the electronic properties down to the
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Fermi level. Each subband is labeled with a different quanThe usual RG argument is that the renormalized propagator
tum number, which corresponds to the momentum in theG must be a finite quantity, so that the divergent dependen-
dimension around the nanotube. For this reason, the domgies on the cutofE, have to be reabsorbed in the scale of the
nant processes are those where each scattered electron yigave functionz'? and the Fermi velocity - .*’Under a dif-
mains in the same linear branch. The main effect of the inferential variation ofE., Z*? is renormalized according to
teraction is to dress the bare electron propagator with the
polarization of theN different subbands given by d f(D) &

Ee g 00Z(Eo) =~ 5 2 (~1)"g""

2-Dy,2
(ko) =2N6D) g (1D "(3-D)
thn(D). (15
where b(D) = (2/m)[T((D +1)/2)?T'((3—D)/2)/ n(

(2ym)Pr(D+1)].* The polarization(11) is the analytic The renormalization of ¢ can be translated into that of the
continuation of the known result for two linear branches witheffective couplingg=2Nb(D)c(D)e?/vg, since the elec-
opposite chirality, which we take away from=1 in order  tron chargee is not renormalized in our model. The RG
to carry out a consistent regularization of the Coulomb interequation forg becomes

action. After dressing the interaction with the polarization

(11), the electron self-energy is given by the expression d f(D) 2(D—1)
Ecd_Eg(Ec):WngE (=9)"
S (Kowy) = ZJEC/UFd | |D_1J dQ [ dw, c n=0
(K,wp)=—e 0 PIP (2m)PJ 2m (3-D)n+1 h (D 16
“lGonre/™P- 10

><G(k_p’w"_w”)|p|D*l We are now in a position to study the influence of the

c(D) +e’I1(p, wp) long-range Coulomb interaction in the linit— 1. For this
purpose, we start by considering the RG equatith). The
12 series shown on the right hand si@as) can be summed up
ftD=1, the flow equation taking then the following form in
the neighborhood of that point:

The low-energy properties of the theory are investigate
by taking the limitE.— 0, where the self-energy turns out
to have terms linear i, andk that depend logarithmically q 1
on the cutoff. This is the signal that the scale of the electron 4 _ (D _ _

. @

1
wave function and the Fermi velocity are renormalized at V1+g
low energies. Then one has to assume that the bare electron
field, for which the correlators are computed, has a depen- |t follows from Eq.(17) that, atD=1, there is formally a

dence on the cutofE. of the form line of fixed points covering all values of the interaction
o strength. However, we still have to take into account that the
Vipard Ec) =Z71(E) W, (13 effective couplingg(D) becomes singular in the limiD
whereW is the cutoff-independent electron field. The diver- —1. We can shuffle this divergence into the initial value of
gent contributions to the electron propagator read the couplinggo(D), which turns out to have ne@r=1 the
asymptotic behavior
- S~77 Y k)
T A T AT WK~ VO 2
G G e 1
0 Jo(D)~N— D-1 (18)
(D) o ,[ n(3-D) ToF
27 5 2 (D) e e , : ,
2N =6 n(3—D)+2 Then, by matching the behavior gf(D) with that of Eq.

(17), we observe that th® —1 factor in the rhs of the RG
equation is not completely canceled out in the liBit 1.
This shows in a rigorous way that the bare 1D long-range
(14) interaction is at a RG fixed point for arbitrary values of the
interaction strength.
where We next consider the RG equatighb) for the electron
wave function scale in the limD— 1. The series on the rhs
I'(n(3-D)/2+1/2) can be also summed up Bt=1, with the result that the
I'(n(3—-D)/2+1) °’ scaling equation in that limit reads

2 n(3-D)+1
" Dn(3-D)+2

vFo-k)hn(D)log(Ec),

g=2Nb(D)c(D)e’/ve, hy(D)=

1
2P 7O+ 12P(D/2)b(D)

f(D)=

d 1 1
Ecd—EclogZ(Ec)gm(\/l-Fg-F\/1Tg—2). (29
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The function on the rhs of Eq19) coincides with the 0.5
anomalous electron dimension found in the exact solution of
the Luttinger modet®!° This ensures that the RG approach 04
is a sensible way to obtain the low-energy properties of the
model. We have to bear in mind that our description intro- 03
duces however two important differences with respect to the o
usual treatment of 1D interacting electrons. On the one hand, 0.2
the slight deviation of the model frol@ =1 allows one to
control the approach to the bare long-range interaction as the 0.1
length of the system is increased. On the other hand, we have

also incorporated the effect of the numibéof subbands that
contribute at low energies, in order to account for the influ-

ence' of doping in MWNT. . . FIG. 1. Estimates of the exponemtfrom the rhs of Eq(19), for
With the RG approach we can face two different experl-ez/wva%LS_ The different curves correspond, from top to bottom,

mental conditions, depending on the magnitude of the typicaly p=1.14, 1.16, and 1.18.
energy scale involved in the measurement process, as com-
pared to the spacing between subbands in the nanotube
sample. When the latter is larger than the temperature or bias

voltage applied to the sample, we are in a situation where thghe, the scaling is performed down to energies which are up
number of subbands can be taken as constant along the RGyq four orders of magnitude below the characteristic high-

flow. Otherwise, for large enough temperature or bias voltenergy scale of the model. Thus, the crossover to a stable
age, the number of subbands that contribute at the scale gkhavior ofZ(E,) turns out to happen at such small energies
the high-energy cutoff is a decreasing variablé€gs>0. We  that it is not observable in practice. For the typical scales at
deal separately with the two instances in what follows. which the experiments are performédown to energies of
RG approach with a constant number N of subbards. the order of a few me) one can safely estimate the expo-
transport experiments, the typical scale of temperature omenta controlling the power-law behavior of the density of
bias voltage lies usually below the scale of the spacing bestates from the rhs of Eq19).
tween subbands. This has been so, even in the measurementsThe measurements of the tunneling density of states in
made in MWNT, where the spacing corresponding to a typi-SWNT have shown a power-law dependence on energy, with
cal diameterd~17 nm is as small av/d~29 meV. In  values of the critical exponentxr accumulating around
these conditions, the only subbands that contribute to the-0.35%° We have represented in Fig. 1 the estimates ob-
properties measured experimentally are those crossing thained from the rhs of Eq.19), for small values ofD—1.
Fermi level. The values ofe have a smooth dependence on the lerigth
We apply then Eqs(18) and (19) to confront the experi- of the system and fall around~0.35 for N=2 andD
mental results on the tunneling density of states gathereet1.14, with a reasonable choice of the coupliefdm2v g
from different nanotube samples. Starting with the measure~1.5.
ments made in SWNT, we take a number of subbaNds  Our results also show an overall agreement with the ex-
=2 in the equations and adjust the deviation frBre=1 in  ponents measured in MWNT. It has been noticed that such
accordance to the length of the experimental sample. Followsystems are significantly doped, so that a large number of
ing the argument below Ed9), we use the correspondence subbands are found at the Fermi level. The experimental con-
1/(D—1)~In(L/d), L being the nanotube length amtithe ditions refer to a situation whermd~5-10 (without taking
nanotube diameter. A suitable choice corresponding to thinto account the spin degeneracit has been reported that
experiments reported in Ref. 5 igd~ 10, which gives in  the values of the critical exponeatmeasured in 11 different
turnD~1.14. samples range from 0.24 to 0.87his variation can be ac-
The behavior of the scalg'? of the electron wave func- counted for within our RG approach by assuming that the
tion can be used to establish the phase in which the electramumber of subbands used in the renormalization may shift
system falls at low energies. A finite value B{E.) in the  from N=2 to N=10. Part of the drift observed in the critical
limit E.—O0 is the signature of the persistence of electronexponent may also be due to the smaller aspect ratio of
quasiparticles near the Fermi level. The power-law depenMWNT, although this fact is difficult to assess given the lack
dence ofZ(E.) on E. points instead at the incoherent propa- of information about the total length of the experimental
gation of fermion-like excitations and the onset of Luttinger samples.
liquid behavior. For the values dd which are estimated We show then that the suppression of tunneling in MWNT
relevant for the experiments, it can be checked that the cowcan be softened by increasing the doping level. Our results
pling g(E;) obtained from Eq.(17) is far away from the may also be relevant in general for nanotubes of large radius
region of attraction of the infrared free fixed point. It has where there are a large number of subbands crossing the
been actually shown in Ref. 14 that, for valuesDbbelow  Fermilevel. These instances can be considered as midway in
1.2, the dependence B{E.) cannot be distinguished from a the process of making contact with the physical properties of
power-law behavior a graphene sheet. This requires taking systems with larger

51015%\(1)25303540

Z(Eo)~E¢ (20
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Dim=6/5 (1.20) - - - - - represents the number of subbands, in a unit of energy nor-

o malized with respect td,.

Dim=8/7 (1.14) We obtain the scaling of the quasiparticle weighand

the different observables by imposing a dependendg oif

the cutoff E. according to the above-mentioned formula.
This description yields a sensible prediction for experiments
where the average effect of a large number of subbands is
measured. The dependence of the quasiparticle w&igint
energy as the cutoff is sent toward the Fermi level is repre-
sented in Fig. 2, for different values of,. In the present
instance, the dominant contribution to the power-law behav-
ior of the tunneling density of states comes from the number
of subbands varying with the energy scale. This sets the
value ofa close to 1 from the start, which is the natural way
of recovering the characteristic linear density of states of a
graphite layer from our 1D point of view.

We observe from the results in Fig. 2 that the quasiparticle
weight Z tends to have a flat behavior at high energies for
large values of the density of subbangs. This is in con-
trast to the rapid decrease signaling the typical power-law

—LogE behavior for small values afi;. In the curves fom,=100
andn,= 1000, we see the existence of a crossover between a

FIG. 2. (Color online Energy dependence of the quasiparticle regime with persistent quasiparticles and another character-
weight Z at dimensions 6/5 and 8/7, for different valuesngf. istic of the Luttinger liquid behavior. The physical interpre-

tation is that, for high energies above the crossover scale, the

transverse size, which in turn may lead to a situation Whergystem has similar properties to the 2D graphene, while one

the spacing between subbands is smaller than the typic fs to look at sufficiently small energy scaleslarge length

energy scale in the experimental measurements. One thgﬁwg E)a\%e%%:;?ngl? gé?/Z?;T'izs?Lttshiht? ;/nvge. be checked
has to change slightly the computational scheme, as dis- y

cussed in the following. against future measurements carried out in MWNT and

RG approach with a cutoff-dependent number of Sub_nanotubes of very large radius. We predict that the exponent

bands NE,). In samples of a very large diameter, one maygiving the power-law_beh_avior of the_ tunneling de_nsity of
envisage conditions where the temperature or the bias voI?—tates may.suffer a S|g_n|f|_cant reduct_|on upon doping those
age are much larger than the subband spacing in the nan ystems, with the possibility of reaching values as small as

tube. The RG approach can be still implemented, but takin ;Lng(:{l,t;lezdz)?v\évre E;VE ?;?ussh%\]”e T;?stévgriTe%Z?l'n%gv'fge
into account that the number of subbands contributing in th ylarg ' g gy reg

partial integration of modes at enerdy, depends on the V\;ith persister:jt. e'eCtFO” ?uasipharticleﬁ whicr;] his p_roperlt.ies
value of the high-energy cutoff. Let us suppose for simplicityc.zSer tobtv;/_o- |menrs],|?na grap enebt afn.tot c utglng(zr 'q'l
that the system is at half-filling, with the typical structure of uid. We believe such features may be of interest when devel-
two subbands crossing at the Fermi level. For not too Iargé)pmg carbon-based devices made of graphene and nanotube

X ; Structures with different shapes.
energies, the number of subbands crossing the energydevel
then has a linear dependence &nN(e) =N+ nye, where This work is partly supported by the ltalian Research
No=2 is the number of subbands at the Fermi level apd  Ministry, National Interest Program.

1A. Bachtold, P. Hadley, T. Nakanishi, and C. Dekker, Science P. L. McEuen, M. Buitelaar, and C. Samenberger,

294, 1317(2001). cond-mat/0012262.
2R. Egger and A. O. Gogolin, Phys. Rev. Let9, 5082 (1997); "R. Egger and H. Grabert, Phys. Rev. L&®, 3463(1997.
Eur. Phys. J. B3, 281(1998. 83. Bellucci and J. Goniee, Eur. Phys. J. B8, 3 (2000.
3C. Kane, L. Balents, and M. P. A. Fisher, Phys. Rev. Lég. °R. Egger, Phys. Rev. Let83, 5547(1999.
5086(1997). 10M. Kriiger, M. R. Buitelaar, T. Nussbaumer, C. Snbaberger,

4M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley, and L. Forrg Appl. Phys. Lett.78, 1291(2007).
L. Balents, and P. L. McEuen, Natufleondon 397, 598(1999. 11 . Balents and M. P. A. Fisher, Phys. Rev5B, 12133(1996); H.
5Z. Yao, H. W. Ch. Postma, L. Balents, and C. Dekker, Nature J. Schulz,bid. 53, R2959(1996; M. Fabrizio, ibid. 48, 15838

(London 402, 273(1999. (1993; T. Kimura, K. Kuroki, and H. Aoki,ibid. 54, R9608
6A. Bachtold, M. de Jonge, K. Grove-Rasmussen, P. L. McEuen, (1996; H.-H. Lin, L. Balents, and M. P. A. Fisheihid. 56, 6569
M. Buitelaar, and C. Schhenberger, Phys. Rev. Le&7, 166801 (1998.

(200D; A. Bachtold, M. de Jonge, K. Grove-Rasmussen, 12R. Egger and A. O. Gogolin, Phys. Rev. Le37, 066401(2001).

085404-5



S. BELLUCCI, J. GONZ/LEZ, AND P. ONORATO PHYSICAL REVIEW B69, 085404 (2004

13R. Shankar, Rev. Mod. Phy66, 129 (1994. 16 C. Itzykson and B. ZuberQuantum Field TheoryMcGraw—
s, Bellucci and J. Gonfez, Phys. Rev. B64, 201106R) Hill, New York, 1980.
(2007). 17p-A. Bares and X. G. Wen, Phys. Rev.4B, 8636(1993.

15The method of analytic continuation in the number of dimensions'® V. J. Emery, inHighly Conducting One-Dimensional Soljcd-
has been proposed in the case of a short-range interaction by C. ited by J. T. Devreese, R. P. Evrard, and V. E. Van DdiRle-
Castellani, C. Di Castro, and W. Metzner, Phys. Rev. LE&Z. num, New York, 1979
316(1994. 193, Sdyom, Adv. Phys.28, 201 (1979.

085404-6



