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Doping- and size-dependent suppression of tunneling in carbon nanotubes
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We study the effect of doping in the suppression of tunneling observed in multi-walled nanotubes, incorpo-
rating as well the influence of the finite dimensions of the system. A scaling approach allows us to encompass
the different values of the critical exponenta measured for the tunneling density of states in carbon nanotubes.
We predict that further reduction ofa should be observed in multi-walled nanotubes with a sizable amount of
doping. In the case of nanotubes with a very large radius, we find a pronounced crossover between a high-
energy regime with persistent quasiparticles and a low-energy regime with the properties of a one-dimensional
conductor.
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In recent years there has been much interest in the in
tigation of the electronic properties of carbon nanotub
~CN!.1 The reduced dimensionality of these systems lead
the appearance of unconventional effects, such as a sup
sion of the tunneling conductance at low energy scales. T
has been interpreted as a signature of the so-called Lutti
liquid behavior,2,3 characterized by the absence of electr
quasiparticles in the spectrum. Evidence of a power-law
havior in the tunneling density of states at low energies
been obtained from measurements in ropes,4 individual
single-walled nanotubes~SWNT!5 and multi-walled nano-
tubes~MWNT!.6

In the Luttinger liquid picture, critical exponents of ob
servables like the density of states are not universal and
pend on the interaction strength. In the case of CN, this
fers to the ubiquitous Coulomb interaction. However,
precise determination of the interaction strength is preclu
by the fact that the electron–electron interaction is actu
long-ranged, and it can be assimilated to a coupling cons
only after introducing a suitable infrared cutoff in the sing
lar expression of the one-dimensional~1D! Coulomb
potential.7,8

Furthermore, the shape of CN becomes relevant in set
the strength of the electron correlations. In the case
MWNT, measurements of the conductance refer usually
the outer layer, whose electronic properties are influenced
the interaction with inner metallic cylinders.9 Also, MWNT
use to be significantly doped, which leads to the presenc
a large number of subbands at the Fermi level.10 The contri-
bution of a large number of modes at low energies has t
an appreciable impact on the enhancement of observa
like the tunneling density of states.

The purpose of the present paper is to study the comb
effect of the finite length of the electron system, on the o
hand, and of the number of subbands at low energies, on
other hand, in the Luttinger liquid description of CN. The
have been precedent studies devoted to understanding
effects of coupling a large number of subbands in o
dimensional electron systems.11 The main difference intro-
duced by our analysis is that we focus on the case of
long-range Coulomb interaction, which is the relevant
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stance for CN under common experimental conditions. Th
the main effects of the interaction come from scattering p
cesses with low momentum transfer, in which the repuls
interaction is enhanced. From a 1D point of view, the Co
lomb potential has a logarithmic dependence on
momentum2

VC~k!'~1/2p! ln~kc /k!, ~1!

wherekc is a short-distance cutoff, of the order of the inver
of the diameterd in the case of the CN. The momentu
transferk is only limited in the infrared by the inverse of th
nanotube lengthL. This means that, for typical experiment
samples which are about one micron long, the scattering
cesses with generic momentum transfer have a stre
about one order of magnitude below that of the forwa
scattering processes. We will then consider the regime wh
L is several orders of magnitude greater thand, in which
backscattering and Cooper-pair processes can be safely
regarded in favor of those with forward-scattering probi
the singular character of the repulsive interaction.

We will actually show that a precise treatment of the lon
range character of the Coulomb interaction allows one
account for the suppression of the tunneling density of sta
observed in the MWNT. It has been found that the expone
for the low-energy power-law behavior measured experim
tally are relatively large, compared to the results obtained
a conventional Luttinger liquid description.6 This has led to
the proposal that a nonconventional Coulomb blockade
fect including disorder must be responsible for the lo
energy behavior observed in the experiments.12 The results
from our study imply that the long-range character of t
Coulomb interaction has to be taken into account for a co
plete description of the MWNT, as the consequent enhan
ment of the forward-scattering processes provides a com
mentary way of understanding the relatively lar
suppression of the tunneling density of states.

With this aim, we adopt a renormalization group~RG!
approach, which is well suited to obtain the energy dep
dence of quantities like the quasiparticle weight.13 In the
representation~1! of the potential, the logarithmic depen
©2004 The American Physical Society04-1
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dence onk leads to an imperfect scaling behavior, maki
the use of the RG approach not quite appropriate. In orde
cure the infrared singularities arising from the long-ran
interaction, we implement a dimensional regularization
the theory, writing formally all bare quantities slightly awa
from dimensionD51.14,15 This formal artifact has a rea
physical meaning since, as we are going to see, the devia
D21 yields a measure of the finite size of the system, w
the limit D→1 corresponding to the case of increasing
long nanotubes.

The proposed regularization of the long-range interact
provides a sensible description of the low-energy proper
of the electron system, as the interacting theory remains s
invariant, up to logarithmic corrections, at any dimensi
above D51. Let us consider the case of a generic tw
component electron fieldC(r ) with linear dispersion and
subject to the long-range Coulomb interaction. We can w
the action at general dimensionD in the form

S5E dtE dDr C1~r !~ i ] t1 ivFs•¹!C~r !

2e2E dtE dDr E dDr 8C1~r !

3C~r !
1

ur2r 8u
C1~r 8!C~r 8!, ~2!

where the s i matrices are defined formally by$s i ,s j%
52d i j . Under a change in the scale« of the energy variables
in the model,

«→s«, ~3!

we must have accordingly

t→s21t. ~4!

The requirement of scale invariance for the kinetic term
Eq. ~2! dictates the transformation rules

r→s21r , ~5!

C~r !→sD/2C~r !. ~6!

The important point is that the interaction term in t
action~2! remains scale invariant under the scaling transf
mation~3!–~6!. It can be checked that additional interactio
mediated by a local potential or with higher content of ele
tron fields lead to terms scaling with positive powers of ths
factor, therefore being irrelevant in the low-energy limits
→0. The same applies to terms accounting for higher-or
corrections to the linear dispersion relation. This means
the model given at the classical level by Eq.~2! is a good
starting point to study the low-energy properties of t
theory at the quantum level, since it is not going to be p
turbed by the appearance of additional interactions that m
grow large in the low-energy limit.

The Coulomb potential 1/ur u can be represented in thre
spatial dimensions as the Fourier transform of the propag
1/k2,
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ur u
5E d3k

~2p!3
eik"r

1

k2
. ~7!

If the interaction is projected onto one spatial dimension,
integrating for instance the modes in the two transverse
mensions, then the Fourier transform has the usual loga
mic dependence on the momentum shown in Eq.~1!, kc be-
ing the memory that the system keeps of the finite transve
size. We choose instead to integrate formally a numbe
2D of dimensions, so that the long-range potential gets
representation

1

uxu
5E dDk

~2p!D
eikx

c~D !

ukuD21
, ~8!

wherec(D)5G((D21)/2)/(2Ap)32D. In the limit D→1,
the expression of the potential in momentum space beco

c~D !

ukuD21
'

1

2p S 1

D21
2 ln~ uku!1••• D . ~9!

Expression~9! shows, after comparison with Eq.~1!, that
1/(D21) corresponds actually to the logarithm of the sho
distance cutoffkc . It may seem at first glance that this rel
tion is not precisely defined, sincekc is a dimensionful pa-
rameter. This ambiguity is however resolved in t
framework of the RG, in which one predicts the behavior
the observables upon changes in the scale. As long as
momenta are scaled down to zero in order to reach the l
energy limit of the theory, the quantity 1/(D21) stands for
the logarithm of the ratio between the highest and the low
momentum attained in the scaling procedure. The latte
constrained by the length of the electron system, which a
as an infrared cutoff. Thus, the dimensionless quan
1/(D21) has to be traded for the logarithm of the lengthL
of the system, measured in units of the finite nanotube dia
eter d. This argument makes clear that such an equivale
has asymptotic character, and that it must hold provided
L@d.0.

In order to proceed with the RG program, we write th
the Hamiltonian for the linear branches of CN in the form

H5vF(
as

E
0

Ec /vF
dpupuD21E dV

~2p!D
Cas

1 ~p!s"pCas~p!

1e2E
0

Ec /vF
dpupuD21E dV

~2p!D
r~p!

c~D !

upuD21
r~2p!,

~10!

wherer(p) are density operators made of the electron fie
Cas(p), with a labeling the Fermi point ands the spin
projection. The sum in Eq.~10! runs then over the usual fou
modes present in a single-walled nanotube, but it may
clude also the contribution from a large number of subba
in the case of a doped multi-walled nanotube.

We focus on the scaling properties of the model as
energy cutoffEc is lowered, when a large numberN of sub-
bands contribute to the electronic properties down to
4-2



an
th
m
n
in
th

ith

e
on

te

ro
t
ct
e

r-

ator
en-
he

e

he

n

n
the

of

ge
he

s

DOPING- AND SIZE-DEPENDENT SUPPRESSION OF . . . PHYSICAL REVIEW B 69, 085404 ~2004!
Fermi level. Each subband is labeled with a different qu
tum number, which corresponds to the momentum in
dimension around the nanotube. For this reason, the do
nant processes are those where each scattered electro
mains in the same linear branch. The main effect of the
teraction is to dress the bare electron propagator with
polarization of theN different subbands given by

P~k,vk!52Nb~D !
vF

22Dk2

uvF
2k22vk

2u(32D)/2
, ~11!

where b(D)5(2/Ap)@G((D11)/2)2G((32D)/2)/
(2Ap)DG(D11)#.16 The polarization~11! is the analytic
continuation of the known result for two linear branches w
opposite chirality, which we take away fromD51 in order
to carry out a consistent regularization of the Coulomb int
action. After dressing the interaction with the polarizati
~11!, the electron self-energy is given by the expression

S~k,vk!52e2E
0

Ec /vF
dpupuD21E dV

~2p!DE dvp

2p

3G~k2p,vk2vp!
2 i

upuD21

c~D !
1e2P~p,vp!

.

~12!

The low-energy properties of the theory are investiga
by taking the limitEc→0, where the self-energyS turns out
to have terms linear invk andk that depend logarithmically
on the cutoff. This is the signal that the scale of the elect
wave function and the Fermi velocityvF are renormalized a
low energies. Then one has to assume that the bare ele
field, for which the correlators are computed, has a dep
dence on the cutoffEc of the form

Cbare~Ec!5Z1/2~Ec!C, ~13!

whereC is the cutoff-independent electron field. The dive
gent contributions to the electron propagator read

1

G
5

1

G0
2S'Z21~vk2vFs"k!

2Z21
f ~D !

2N (
n50

`

~21!ngn11S n~32D !

n~32D !12
vk

1S 12
2

D

n~32D !11

n~32D !12D vFs"kDhn~D !log~Ec!,

~14!

where

g52Nb~D !c~D !e2/vF , hn~D !5
G~n~32D !/211/2!

G~n~32D !/211!
,

f ~D !5
1

2Dp (D11)/2G~D/2!b~D !
.
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The usual RG argument is that the renormalized propag
G must be a finite quantity, so that the divergent depend
cies on the cutoffEc have to be reabsorbed in the scale of t
wave functionZ1/2 and the Fermi velocityvF .17Under a dif-
ferential variation ofEc , Z1/2 is renormalized according to

Ec

d

dEc
logZ~Ec!52

f ~D !

2N (
n50

`

~21!ngn11

3
n~32D !

n~32D !12
hn~D !. ~15!

The renormalization ofvF can be translated into that of th
effective couplingg52Nb(D)c(D)e2/vF , since the elec-
tron chargee is not renormalized in our model. The RG
equation forg becomes

Ec

d

dEc
g~Ec!5

f ~D !

2N

2~D21!

D
g2(

n50

`

~2g!n

3S ~32D !n11

~32D !n12Dhn~D !. ~16!

We are now in a position to study the influence of t
long-range Coulomb interaction in the limitD→1. For this
purpose, we start by considering the RG equation~16!. The
series shown on the right hand side~rhs! can be summed up
at D51, the flow equation taking then the following form i
the neighborhood of that point:

Ec

d

dEc
g~Ec!'

1

2N
~D21!gS 12

1

A11g
D . ~17!

It follows from Eq.~17! that, atD51, there is formally a
line of fixed points covering all values of the interactio
strength. However, we still have to take into account that
effective couplingg(D) becomes singular in the limitD
→1. We can shuffle this divergence into the initial value
the coupling,g0(D), which turns out to have nearD51 the
asymptotic behavior

g0~D !'N
e2

p2vF

1

D21
. ~18!

Then, by matching the behavior ofg0(D) with that of Eq.
~17!, we observe that theD21 factor in the rhs of the RG
equation is not completely canceled out in the limitD→1.
This shows in a rigorous way that the bare 1D long-ran
interaction is at a RG fixed point for arbitrary values of t
interaction strength.

We next consider the RG equation~15! for the electron
wave function scale in the limitD→1. The series on the rh
can be also summed up atD51, with the result that the
scaling equation in that limit reads

Ec

d

dEc
logZ~Ec!'

1

4N S A11g1
1

A11g
22D . ~19!
4-3
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The function on the rhs of Eq.~19! coincides with the
anomalous electron dimension found in the exact solution
the Luttinger model.18,19 This ensures that the RG approa
is a sensible way to obtain the low-energy properties of
model. We have to bear in mind that our description int
duces however two important differences with respect to
usual treatment of 1D interacting electrons. On the one ha
the slight deviation of the model fromD51 allows one to
control the approach to the bare long-range interaction as
length of the system is increased. On the other hand, we h
also incorporated the effect of the numberN of subbands tha
contribute at low energies, in order to account for the infl
ence of doping in MWNT.

With the RG approach we can face two different expe
mental conditions, depending on the magnitude of the typ
energy scale involved in the measurement process, as c
pared to the spacing between subbands in the nano
sample. When the latter is larger than the temperature or
voltage applied to the sample, we are in a situation where
number of subbandsN can be taken as constant along the R
flow. Otherwise, for large enough temperature or bias v
age, the number of subbands that contribute at the sca
the high-energy cutoff is a decreasing variable asEc→0. We
deal separately with the two instances in what follows.

RG approach with a constant number N of subbandsIn
transport experiments, the typical scale of temperature
bias voltage lies usually below the scale of the spacing
tween subbands. This has been so, even in the measurem
made in MWNT, where the spacing corresponding to a ty
cal diameterd'17 nm is as small as\vF /d'29 meV. In
these conditions, the only subbands that contribute to
properties measured experimentally are those crossing
Fermi level.

We apply then Eqs.~18! and ~19! to confront the experi-
mental results on the tunneling density of states gathe
from different nanotube samples. Starting with the measu
ments made in SWNT, we take a number of subbandN
52 in the equations and adjust the deviation fromD51 in
accordance to the length of the experimental sample. Foll
ing the argument below Eq.~9!, we use the correspondenc
1/(D21)' ln(L/d), L being the nanotube length andd the
nanotube diameter. A suitable choice corresponding to
experiments reported in Ref. 5 isL/d;103, which gives in
turn D'1.14.

The behavior of the scaleZ1/2 of the electron wave func
tion can be used to establish the phase in which the elec
system falls at low energies. A finite value ofZ(Ec) in the
limit Ec→0 is the signature of the persistence of electr
quasiparticles near the Fermi level. The power-law dep
dence ofZ(Ec) on Ec points instead at the incoherent prop
gation of fermion-like excitations and the onset of Lutting
liquid behavior. For the values ofD which are estimated
relevant for the experiments, it can be checked that the c
pling g(Ec) obtained from Eq.~17! is far away from the
region of attraction of the infrared free fixed point. It h
been actually shown in Ref. 14 that, for values ofD below
1.2, the dependence ofZ(Ec) cannot be distinguished from
power-law behavior
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Z~Ec!;Ec
a ~20!

when the scaling is performed down to energies which are
to four orders of magnitude below the characteristic hig
energy scale of the model. Thus, the crossover to a st
behavior ofZ(Ec) turns out to happen at such small energ
that it is not observable in practice. For the typical scales
which the experiments are performed~down to energies of
the order of a few meV!, one can safely estimate the exp
nenta controlling the power-law behavior of the density
states from the rhs of Eq.~19!.

The measurements of the tunneling density of states
SWNT have shown a power-law dependence on energy, w
values of the critical exponenta accumulating around
'0.35.4,5 We have represented in Fig. 1 the estimates
tained from the rhs of Eq.~19!, for small values ofD21.
The values ofa have a smooth dependence on the lengtL
of the system and fall arounda'0.35 for N52 and D
'1.14, with a reasonable choice of the couplinge2/p2vF
'1.5.

Our results also show an overall agreement with the
ponents measured in MWNT. It has been noticed that s
systems are significantly doped, so that a large numbe
subbands are found at the Fermi level. The experimental c
ditions refer to a situation whereN'5–10 ~without taking
into account the spin degeneracy!. It has been reported tha
the values of the critical exponenta measured in 11 differen
samples range from 0.24 to 0.37.6 This variation can be ac
counted for within our RG approach by assuming that
number of subbands used in the renormalization may s
from N52 to N510. Part of the drift observed in the critica
exponent may also be due to the smaller aspect ratio
MWNT, although this fact is difficult to assess given the la
of information about the total length of the experimen
samples.

We show then that the suppression of tunneling in MWN
can be softened by increasing the doping level. Our res
may also be relevant in general for nanotubes of large ra
where there are a large number of subbands crossing
Fermi level. These instances can be considered as midwa
the process of making contact with the physical properties
a graphene sheet. This requires taking systems with la

FIG. 1. Estimates of the exponenta from the rhs of Eq.~19!, for
e2/p2vF'1.5. The different curves correspond, from top to botto
to D51.14, 1.16, and 1.18.
4-4
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transverse size, which in turn may lead to a situation wh
the spacing between subbands is smaller than the typ
energy scale in the experimental measurements. One
has to change slightly the computational scheme, as
cussed in the following.

RG approach with a cutoff-dependent number of s
bands N(Ec). In samples of a very large diameter, one m
envisage conditions where the temperature or the bias v
age are much larger than the subband spacing in the n
tube. The RG approach can be still implemented, but tak
into account that the number of subbands contributing in
partial integration of modes at energyEc depends on the
value of the high-energy cutoff. Let us suppose for simplic
that the system is at half-filling, with the typical structure
two subbands crossing at the Fermi level. For not too la
energies, the number of subbands crossing the energy le«
then has a linear dependence on«, N(«)5N01np«, where
N052 is the number of subbands at the Fermi level andnp

FIG. 2. ~Color online! Energy dependence of the quasipartic
weight Z at dimensions 6/5 and 8/7, for different values ofnp .
c

y,

ur

en
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represents the number of subbands, in a unit of energy
malized with respect toN0.

We obtain the scaling of the quasiparticle weightZ and
the different observables by imposing a dependence ofN on
the cutoff Ec according to the above-mentioned formul
This description yields a sensible prediction for experime
where the average effect of a large number of subband
measured. The dependence of the quasiparticle weightZ on
energy as the cutoff is sent toward the Fermi level is rep
sented in Fig. 2, for different values ofnp . In the present
instance, the dominant contribution to the power-law beh
ior of the tunneling density of states comes from the num
of subbands varying with the energy scale. This sets
value ofa close to 1 from the start, which is the natural wa
of recovering the characteristic linear density of states o
graphite layer from our 1D point of view.

We observe from the results in Fig. 2 that the quasipart
weight Z tends to have a flat behavior at high energies
large values of the density of subbandsnp . This is in con-
trast to the rapid decrease signaling the typical power-
behavior for small values ofnp . In the curves fornp5100
andnp51000, we see the existence of a crossover betwe
regime with persistent quasiparticles and another charac
istic of the Luttinger liquid behavior. The physical interpr
tation is that, for high energies above the crossover scale
system has similar properties to the 2D graphene, while
has to look at sufficiently small energy scales~or large length
scales! to measure the properties of the 1D wire.

We have obtained several results that may be chec
against future measurements carried out in MWNT a
nanotubes of very large radius. We predict that the expon
giving the power-law behavior of the tunneling density
states may suffer a significant reduction upon doping th
systems, with the possibility of reaching values as smal
0.1 for N'40. We have also shown that, when dealing w
nanotubes of very large radius, there is a high-energy reg
with persistent electron quasiparticles which has proper
closer to two-dimensional graphene than to the Luttinger
uid. We believe such features may be of interest when de
oping carbon-based devices made of graphene and nano
structures with different shapes.
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