research

Regularization independent of the noise level: an analysis of quasi-optimality

Abstract

The quasi-optimality criterion chooses the regularization parameter in inverse problems without taking into account the noise level. This rule works remarkably well in practice, although Bakushinskii has shown that there are always counterexamples with very poor performance. We propose an average case analysis of quasi-optimality for spectral cut-off estimators and we prove that the quasi-optimality criterion determines estimators which are rate-optimal {\em on average}. Its practical performance is illustrated with a calibration problem from mathematical finance.Comment: 18 pages, 3 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 10/12/2019