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Abstract

Recent experimental and theoretical results on intrinsic superconductivity in ropes of single-

wall carbon nanotubes are reviewed and compared. We find strong experimental evidence for

superconductivity when the distance between the normal electrodes is large enough. This indi-

cates the presence of attractive phonon-mediated interactions in carbon nanotubes, which can

even overcome the repulsive Coulomb interactions. The effective low-energy theory of rope super-

conductivity explains the experimental results on the temperature-dependent resistance below the

transition temperature in terms of quantum phase slips. Quantitative agreement with only one

fit parameter can be obtained. Nanotube ropes thus represent superconductors in an extreme 1D

limit never explored before.
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I. INTRODUCTION

The hope to use molecules as the ultimate elementary building blocks for electronic

circuits has motivated the quest to understand electronic transport in thinner and thinner

wires, ideally with one or two conduction modes. However, a number of physical phenomena

tend to drive one-dimensional (1D) metallic wires to an insulating state at low temperature.

Carbon nanotubes, because of their special band structure, can escape such a fate and

remain conducting over lengths greater than one micron down to very low temperature

[1, 2]. Moreover, transport through nanotubes has been shown to be quantum coherent

[3]. This is also demonstrated by the existence of strong supercurrents when individual

nanotubes are connected to superconducting contacts [4, 5]. The observation of intrinsic

superconductivity in ropes of carbon nanotubes containing a few tens of tubes [6, 7] is even

more surprising and indicates the presence of attractive pairing interactions which overcome

the strong repulsive interactions. This phenomenon is described in the present paper, both

from the experimental and the theoretical point of view. A single-wall nanotube (SWNT)

is made of a single graphene plane wrapped into a cylinder. The Fermi surface of graphene

reduces to two discrete points (usually denoted as K and K ′) at the corners of the first

Brillouin zone [8]. As a result, depending on the diameter and helicity, which determine

the boundary conditions of the electronic wave functions around the tube, a SWNT can

be either semiconducting or metallic [1, 2]. A metallic SWNT is characterized by just two

conduction channels, low electronic density, Fermi velocity vF nearly as high as in copper,

and long mean free path [9]. These properties make them long sought-after realizations of

1D conductors. In one dimension, repulsive electron-electron interactions lead to an exotic

correlated electronic state, the Luttinger liquid (LL) [10, 11]. In a LL, collective plasmon-

like excitations give rise to anomalies in the single-particle density of states, and long-range

order cannot survive even at zero temperature. The low-energy theory of SWNTs [12, 13]

predicts a metallic SWNT to constitute a realization of a four-channel LL, with channel

index a = c+, c−, s+, s− corresponding to total/relative charge/spin degrees of freedom.

These arise due to the K −K ′ degeneracy and the electronic spin. The interaction strength

in a SWNT is then parameterized by a single dimensionless parameter g, where g = 1 in the

absence of interactions. For repulsive Coulomb interactions, this parameter is smaller than

unity, with concrete estimates for SWNTs in the range g ≈ 0.2 to 0.3 [12, 13]. For attractive
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interactions caused by phonon exchange, as long as retardation effects are negligible, one

instead obtains a LL with g > 1. In general, both effects have to be combined on equal

footing. For superconductivity to occur, it appears to be necessary to have effectively g > 1.

Experimental evidence for the validity of LL theory in a SWNT has been provided by mea-

surements of the tunneling resistance diverging as a power law with temperature [14, 15],

from photoemission spectroscopy [16], and from transport properties of crossed SWNTs

[17]. From these experimental results, values for the LL parameter in the range g ≈ 0.16

to 0.3, consistent with theoretical expectations, were extracted. Such small values for g

correspond to pronounced repulsive interactions, and would imply that at very low temper-

ature an insulating state is reached unless the material is extremely clean. The measure-

ments in Refs. [14, 15, 17] were done on individual nanotubes connected to the measuring

leads through tunnel junctions. Because of the onset of Coulomb blockade [18], the low-

temperature small-voltage regime has not been explored in depth. We have developed a

technique in which measuring pads are connected through low-resistance contacts to sus-

pended nanotubes [19]. Ropes and individual SWNTs connected to normal contacts using

this technique exhibit only very weak temperature and bias dependence of the resistance

down to 1K. More surprisingly, we have reported experimental evidence of intrinsic super-

conductivity below 0.5 K in ropes, provided that the distance between the normal electrodes

is large enough [6, 7]. In this paper, we discuss the 1D character of the transition and the

physical parameters that govern this transition, such as the length of the rope, the number

of metallic SWNTs in the rope, the intertube couplings, disorder, and so on. Below we

summarize both our experimental results [6, 7] and the low-energy theory describing the

superconducting state in ropes proposed by two of us [20, 21]. Fortunately, the measured

low-temperature data for the resistance allow to perform detailed tests of the theory. In this

theory, the rope is modelled as an array of N metallic SWNTs with effectively attractive in-

tratube interactions, coupled together by Cooper-pair hopping. Attractive phonon-mediated

interactions may overcome the Coulomb repulsion in a sufficiently thick rope, leading to a

LL parameter g > 1. The dominant 1D fluctuations on individual SWNTs then cause the in-

cipient formation of singlet Cooper pairs. Superconductivity of the rope is finally stabilized

by Cooper pair hopping between the tubes (Josephson coupling), see also Refs. [22, 23, 24].

Since typical elastic mean free paths in metallic SWNTs may exceed 1 µm [1, 9], intratube

disorder is completely neglected. However, disorder due to the random distribution of tube
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chiralities in the rope, where only 1/3 of the SWNTs is expected to be metallic [1, 2], is

taken into account in the following way. First, due to momentum-conservation arguments, it

strongly suppresses single-particle hopping between adjacent SWNTs [22, 25], which is thus

neglected henceforth. Second, we introduce a matrix Λ, whose elements Λij represent the

Josephson couplings between the ith and the jth tube, where i, j = 1, . . . , N . In order to

simulate the random distribution of tube chiralities, Λ should be drawn from an appropriate

random distribution. Typically, Λij ≈ a0t
2
⊥/∆E when metallic tubes are nearest neighbors,

and zero otherwise. Here, a0 = 0.24 nm is the lattice spacing, t⊥ is the transverse intertube

hopping energy, and ∆E is the typical energy band spacing within one tube [23]. However,

detailed information about Λ is not needed in the low-energy regime, and general results can

be derived for a fixed but unspecified Λ. For this model, the effective action for the proper

order parameter allows to identify a mean-field transition temperature T 0
c . For T < T 0

c ,

the amplitude of the order parameter is finite, but due to the reduced dimensionality, phase

fluctuations may still destroy superconductivity [26]. Such fluctuations are shown to indeed

cause a depression of the true transition temperature Tc below the mean-field value, which

can be linked to the proliferation of quantum phase slips (QPSs). A QPS is a topological

vortex-like excitation of the superconducting phase field, which only exists in 1D supercon-

ductors [26]. In addition to the Tc depression, QPSs produce a finite sub-Tc linear resistance

apart from the usual temperature-independent contact resistance. This effect is indeed ob-

served experimentally, and can be compared in a quantitative way to theory. Our theory

makes detailed predictions about the temperature dependence of this resistance, where al-

most all free parameters can be determined independently. There is essentially only one free

(dimensionless) fit parameter, which should have a value close to unity. This turns indeed

out to be the case.

This paper is organized as follows. In Sec. II, we summarize and discuss experimental

results on intrinsic superconductivity in ropes of carbon nanotubes. In Sec. III, the effective

low-energy theory of rope superconductivity is reviewed. In Sec. IV, the theoretical predic-

tions are compared with the experimental results. The rather good agreement found there

supports the notion that ropes represent 1D superconductors in the few-channel limit, where

QPSs can be experimentally observed in a clear manner from the temperature-dependent

resistance below Tc.
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II. EXPERIMENTAL EVIDENCE FOR ROPE SUPERCONDUCTIVITY
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FIG. 1: Resistance as a function of temperature for the six samples described in Table I, both for

zero and large magnetic fields.

In this section, we review experimental results from Ref. [7] reporting evidence for intrinsic

superconductivity in ropes of carbon nanotubes. We start with a discussion of the low-

temperature (below 1 K) transport regime of suspended ropes of SWNTs connected to

L N R290K R4.2K T* Ic Ic
∗

R1PtAu 2 µm 350 10.5 kΩ 1.2 kΩ 140 mK 0.1 µA 0.36 µA

R2PtAu 1 µm 350 4.2kΩ 9.2kΩ 550 mK 0.075 µA 3 µA

R3PtAu 0.3µm 350 400 Ω 450 Ω * * *

R4PtAu 1µm 45 620 Ω 620 Ω 120 mK * 0.1 µA

R5PtAu 2 µm 300 16 kΩ 21 kΩ 130 mK 20 nA 0.12 µA

R6PtAu 0.3 µm 200 240 Ω 240 Ω * * *

TABLE I: Summary of the characteristics of six ropes mounted on Pt/Au contacts. T ∗ is the

transition temperature below which the resistance starts to drop, Ic is the current at which the

first resistance increase occurs, and I∗c is the current at which the last resistance jump occurs.
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FIG. 2: Resistance as a function of temperature for samples R1, 2, 5PtAu showing a transition.

The resistance of R1 is measured in magnetic fields of µ0H= 0, 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.4,

0.6, 0.8 and 1 T from bottom to top. The resistance of R2 is taken at µ0H=0, 0.05, 0.1, 0.2, 0.4,

0.6, 0.8, 1, 1.25, 1.5, 1.75, 2, 2.5 T (from bottom to top), that of R5 at µ0H=0, 0.1, 0.2, 0.3, 0.5,

1.4 T (from bottom to top). Bottom right: Tc(H) for R2.

normal electrodes. The electrodes are trilayers of sputtered Al2O3/P t/Au of respective

thickness 5, 3 and 200 nm. They do not show any sign of superconductivity down to 50

mK. As is shown in Fig. 1, different behaviors are observed for the temperature dependence

of the linear resistance. The resistance of short samples whose length is of the order of

0.3 µm (R3PtAu and R6PtAu) increases weakly and monotonously as temperature is reduced,

whereas the resistance of samples longer than 1 µm (R1, 2, 4, 5PtAu) drops over a relatively

broad temperature range, starting below a transition temperature T ∗ between 0.4 and 0.1

K, see Table I. The resistance of R1PtAu is reduced by 30% at 70 mK, and that of R4PtAu by

75% at 20 mK. In both cases, no inflection point in the temperature dependence is observed.

On the other hand, the resistance of R2PtAu decreases by more than two orders of magnitude,

and reaches a constant value below 100 mK, namely Rr = 74 Ω. This residual resistance

Rr is interpreted as a contact resistance which must be present even in the superconducting

phase. The contact resistance arises because only a finite number N of metallic SWNTs is

coupled to the normal-conducting pads. Since each metallic SWNT has two spin-degenerate

conduction channels,

Rr = RQ/2N, RQ = h/2e2 = 12.9 kΩ. (1)
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Since the residual resistance can be experimentally determined quite accurately, at least for

the two samples R2 and R4, the number N can be obtained directly using Eq. (1). This

number is an important parameter for the theory described in Sec. III.

The low-temperature drop of the resistance below T ∗ disappears when increasing the

magnetic field. For all samples, a critical field can be defined, above which the normal-state

resistance is recovered. As shown in Fig. 2, this critical field decreases linearly with tempera-

ture, very similar to what is seen in SWNTs and ropes connected to superconducting contacts

[4, 5]. We define a critical field Hc as the extrapolation of Hc(T ) to zero temperature, see

Fig. 2. Above the critical field, the resistance increases with decreasing temperature, similar

to ropes R3 and R6, and becomes independent of magnetic field. Figures 3 and 4 show

that in the temperature and field range where the linear resistance drops, the differential

resistance is strongly current-dependent, with lower resistance at low current. These data

suggest that the ropes R1, R2, and R4 are superconducting. Although the experimental

curves for R2PtAu look similar to those of SWNTs connected to superconducting contacts

[4], there are major differences. In particular the V (I) and dV/dI(I) curves found here do

not show any supercurrent because the contacts are normal metals, implying a finite residual

resistance.
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curves.
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are 0, 0.2, 0.4, 0.6, 0.8, 1, 1.25, 1.5, 1.75, 2, and 2.5 T. Sample R5: Fields are 0.02, 0.04, 0.06, 0.08

T. Sample R4: Fields are 0, 0.02, 0.06, 0.1, 0.15, 0.2 and 0.4 T. Bottom: Field dependence of Ic

for samples R2PtAu and R4PtAu. Note the linear behavior.

The observed jumps in the differential resistance as the current is increased, see Fig. 5,

are similar to the behavior observed in long narrow superconducting metal wires in the

very vicinity of the transition temperature. However, in the present case these jumps are

observed down to very low temperature [27]. For sample R2, the differential resistance at

low current remains equal to Rr up to 50 nA, where it strongly rises but does not recover

its normal-state value until 2.5 µA. The jump in resistance at the first step corresponds

approximately to the normal-state resistance of a length ξ of sample R2 (Rξ), where ξ is

the superconducting coherence length estimated from ξ =
√

~D/∆ where ∆ is the BCS gap

related to the transition temperature T ∗ and D the diffusion constant describing transport

in the rope in the normal state. Each peak corresponds to a hysteretic feature in the V − I

curve, see Fig. 5. These jumps are identified as phase slips [26, 27, 28], which reflect the

occurrence of normal regions located around defects in the sample. Such phase slips could

be thermally activated phase slips (TAPSs), leading to a roughly exponential decrease of the

resistance instead of a sharp transition. At sufficiently low temperature and voltage, instead

of the TAPSs, quantum phase slips (QPSs) of typical size ξ are expected to dominate. The
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competition between TAPS and QPS processes is addressed briefly in Sec. III below. In

sample R2, the current at which the first resistance jump occurs (60 nA, see Fig. 4) is close

to the critical current expected theoretically for a diffusive superconducting wire [29],

Ic = ∆2/eRξ ≈ 20 nA,

with gap ∆2 = 85 µeV. On the other hand, the current at which the last resistance jump

occurs (2.4 µA, see Fig. 3) is close to the critical current of a ballistic superconducting wire

with the same number of conducting channels [26],

I∗
c =

∆2

eRr
≈ 1 µA.

Before analyzing the data further, we wish to emphasize that this is the first observation

of superconductivity in wires with N < 100 conduction channels. Earlier experiments in
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nanowires [27, 30, 31] dealt with at least a few thousand channels. We therefore expect a

strong 1D behavior for the transition. In particular, the broadness of the resistance drop

with temperature is linked to large fluctuations of the superconducting order parameter as

expected in one dimension. An important parameter is the number of tubes in the rope.

If there are only a few tubes in the rope, the system is very close to the strict 1D limit,

and the transition is very broad. Comparing the two ropes in Fig. 6, it is clear that the

transition, both in temperature and magnetic field, is much broader in sample R4PtAu with

only ≈ 45 tubes than in R2PtAu with ≈ 350 tubes. Moreover, there is no inflection point in

the temperature dependence of the resistance in the thinner rope, typical of a strictly 1D

behavior. We also expect a stronger screening of the repulsive Coulomb interactions in the

thick rope, which is also in favor of superconductivity. In the following, when comparing

to theoretical predictions, we will have to take into account several essential features, e.g.,

the influence of the normal contacts, the finite length of the samples compared to relevant

mesoscopic and superconducting scales, the effects of disorder, and the role of intertube

couplings.

FIG. 6: Resistance as a function of temperature (continuous line) and magnetic field (scatter

points) for samples R2PtAu and R4PtAu. Insets: TEM micrographs of the samples.
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III. EFFECTIVE LOW-ENERGY THEORY OF ROPE SUPERCONDUCTIVITY

In this section we summarize the main features of the recently proposed effective low-

energy theory of intrinsic superconductivity in carbon nanotube ropes. For technical details,

we refer the reader to the original publication [21]. The basic ingredients of the model have

been discussed in the Introduction, see also Refs. [22, 23, 24, 25]. Within the standard

bosonization approach [11], the model is described by the Euclidean action

S =
N

∑

j=1

S
(j)
LL −

∑

jk

Λjk

∫

dxdτ O∗
jOk, (2)

where −L/2 < x < L/2 is the spatial 1D coordinate along the individual SWNTs for rope

length L, and 0 ≤ τ < 1/T is imaginary time (we put ~ = kB = 1 in intermediate steps).

The first term describes the metallic tubes in the rope as N uncoupled identical four-channel

Luttinger liquids [12, 13, 20],

SLL =

∫

dxdτ
∑

a=c±,s±

va

2ga

[

(∂τϕa/va)
2 + (∂xϕa)

2
]

. (3)

Here the boson fields ϕa(x, τ) (and associated dual fields θa) describe the collective to-

tal/relative charge/spin plasmon-like excitations. The interaction parameter for the total

charge mode gc+ ≡ g is determined by the combined effect of Coulomb repulsion and phonon-

mediated attractive interactions. If Coulomb interactions are screened off, e.g., by the other

SWNTs in a thick rope [24], effectively attractive interactions are possible. In what follows,

we assume g > 1, where g ≈ 1.3 has been estimated for (10,10) SWNTs with good screen-

ing [20]. The interaction parameters in the neutral channels are practically not affected by

interactions, gc−,s+,s− = 1. The velocities va in Eq. (3) are given by va = vF /ga, where

vF = 8×105 m/sec is the Fermi velocity. The second term in Eq. (2) describes the intertube

couplings in the form of Cooper-pair hopping. The combined effects of random tube chi-

ralities and attractive electron-electron interactions drive the incipient formation of singlet

Cooper pairs on individual SWNTs. The Cooper pair operator O in Eq. (2) is in bosonized

language expressed as [32]

O =
1

πa0
cos[

√
πθc+] cos[

√
πϕc−] cos[

√
πϕs+] cos[

√
πθs−] − (cos ↔ sin), (4)

where we identify the UV cutoff necessary in the bosonization scheme with the lattice con-

stant a0. In order to investigate the physical properties of the system described by the action
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(2), approximations are necessary. Since in 1D systems fluctuations are strong, we can ex-

pect that the order parameter amplitude remains small over a wide temperature range, and

a Ginzburg-Landau-type expansion should be accurate. To that end, we first decouple the

Josephson terms in Eq. (2) by performing a Hubbard-Stratonovich transformation [33]. This

introduces a complex field ∆i(x, τ), which acts as the superconducting order parameter. The

partition function for the original system can then be expressed as a functional integral over

the fields ∆i, with an effective action formally defined as a functional integral over the LL

boson fields. The latter functional integral cannot be performed analytically, and one has to

resort to approximate methods. A systematic approach proceeds via cumulant expansion,

where the small expansion parameter is |∆|/2πT , and one has to keep terms (at least) up

to quartic order [33]. After perfoming a gradient expansion, justified for slow temporal and

spatial variations of the order parameter, i.e., in the low-energy long-wavelength regime of

primary interest here, one finally obtains a quantum Ginzburg-Landau (GL) action,

S =

∫

dxdτ

{

N
∑

j=1

[(

Λ−1
1 − A

)

|∆j|2 + B|∆j |4
]

+ C|∂x∆j |2 + D|∂τ∆j |2 +
∑

jk

∆∗
jVjk∆k

}

,

(5)

with positive temperature-dependent coefficients A, B, C, D and a real symmetric positive-

definite matrix Vij defined in terms of the Josephson matrix Λ, see Ref. [21] for details.

Furthermore, Λ1 is the largest eigenvalue of Λ. The GL coefficients can be computed analyt-

ically from this expansion, and are expressed in terms of the microscopic model parameters

[21]. Note that we keep the imaginary-time dependence of ∆i(x, τ), which is essential for

what follows. Thereby quantum fluctuations are fully accounted for, in contrast to standard

static GL theory [26]. The coefficient A(T ) is found to grow as T decreases, and hence a

mean-field critical temperature follows from the condition A(T 0
c ) = Λ−1

1 . The result is

T 0
c = c0

~vF

kBa0
(Λ1/~vF )2g/(g−1), (6)

with c0 a dimensionless prefactor of order unity. T 0
c exhibits a dependence on N and the

connectivity of the Josephson matrix through the eigenvalue Λ1. For large N , Λ1(N) sat-

urates, and Eq. (6) approaches the bulk transition temperature. Using Λ1 estimates from

Ref. [23] and typical N from Table I, we find T 0
c ≈ 0.1 to 1 K. A precise estimate is difficult

to give because the Josephson matrix is in general unknown, and due to the typically large

exponent in Eq. (6), T 0
c depends very sensitively on Λ1. For T < T 0

c , it is convenient to
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adopt an amplitude-phase representation of the order parameter, ∆j = |∆j | exp[iφj ]. The

amplitude of the order parameter field is then finite, with a gap for fluctuations around the

mean-field value. This mean-field value can be directly calculated from the saddle-point

equation for the action (5). The numerical solution to this equation shows that the GL

expansion parameter |∆|/2πT indeed remains small down to very low temperatures, and

the use of GL theory is self-consistently justified [21]. Due to the mass gap for amplitude

fluctuations, the amplitudes can then be fixed to their mean field value. Moreover, for

N < 100, transverse fluctuations are negligible both regarding the amplitude, as follows

from the numerical solution of the saddle-point equations, as well as concerning the phase,

which follows from scaling dimension arguments. Therefore, one finally arrives at a standard

Gaussian action governing the dynamics of the superconducting phase [26],

S =
µ

2π

∫

dxdτ
[

c−1
s (∂τφ)2 + cs(∂xφ)2

]

, (7)

where φj = φ(x, τ) is equal on all tubes. The superconductor’s phase is the relevant fluctu-

ation mode in a 1D system. Furthermore, cs is the Mooij-Schön mode velocity [34], which

here is of order vF , and the dimensionless rigidity follows in the form

µ(T ) = Nν
[

1 − (T/T 0
c )(g−1)/2g

]

, (8)

where ν ≈ 1. Equation (8) for the temperature-dependent phase stiffness is one of the central

results in Ref. [21]. The value of ν is difficult to compute in a very precise way. In particular,

disorder and dissipation effects neglected in our model tend to decrease it [35, 36]. Therefore,

ν is considered below as a fit parameter when comparing with experimental data. In fact,

ν turns out to be essentially the only free fit parameter, where internal consistency of the

theory constrains ν to be of order unity. In the 1D system described by the action (7), vortex-

like topological excitations (quantum phase slips of size ξ) can destroy superconductivity

and give rise to a broad resistive transition. This occurs via a Kosterlitz-Thouless transition

[35, 36, 37]. For µ(T ) > 2, phase slips are confined into neutral pairs, and superconductivity

(in the 1D sense of quasi-long-range order) survives the phase fluctuations governed by

Eq. (7). However, for µ(T ) < 2, phase slips proliferate, the phase stiffness is renormalized

to zero, and the system is driven to a normal phase. The true transition temperature then

follows from the condition µ(Tc) = 2, which gives

Tc

T 0
c

=

[

1 − 2

νN

]2g/(g−1)

. (9)
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Equation (9) implies that QPSs can lead to a sizeable depression of the mean-field critical

temperature for N < 100. In Ref. [21] the relative contribution of thermally activated and

quantum phase slips has been estimated. Using results from Ref. [36] it has been shown

that the crossover temperature between the two regimes is of the order of T 0
c , which implies

that for T < Tc, with Tc < T 0
c , only QPSs significantly affect the resistance below Tc.

Indeed, even in the superconducting phase with µ > 2, QPS fluctuations produce a sizeable

resistance. Under a small constant current bias, this resistance can be computed from the

voltage drop V associated to the occurrence of phase slips via the Josephson relation, see

also Ref. [35]. The final result for the linear resistance R(T < Tc) for arbitrary (but larger

than ξ) rope length L and thermal length LT = ~cs/πkBT is [21]

R

RQ
=

(

πyΓ(µ/2)

Γ(µ/2 + 1/2)

)2
πL

2κ

(

LT

κ

)3−2µ ∫ ∞

0

du
2/π

1 + u2

∣

∣

∣

∣

Γ(µ/2 + iuLT /2L)

Γ(µ/2)

∣

∣

∣

∣

4

, (10)

where RQ is the resistance quantum, see Eq. (1), Γ(x) denotes the Gamma function, and

y and κ are the QPS fugacity and core size, respectively. Equation (10) has been obtained

from perturbation theory in the fugacity y, and thus only holds for a dilute QPS gas.

This assumption breaks down in the vicinity of Tc, where QPSs proliferate and cause the

Kosterlitz-Thouless transition. Equation (10) is therefore only reliable well below Tc, and

cannot be used to describe the resistance saturation around T = Tc. For L/LT ≫ 1, the

u-integral approaches unity, and hence R ∝ T 2µ−3, while for L/LT ≪ 1, dimensional scaling

arguments give R ∝ T 2µ−2 [35]. In Refs. [6, 7] typical lengths were L ≈ 1 µm, which puts

one into the crossover regime LT ≈ L. Inspection of Eq. (10) also shows that, as expected,

the transition becomes broader and broader when the number of tubes decreases. This is

illustrated in Fig. 7, where the theoretical resistance curves are depicted for various values

of N , taking ν = 1 and g = 1.3.

IV. COMPARISON WITH EXPERIMENTS

In this section we compare the theoretical result (10) for the temperature-dependent re-

sistance below Tc with the experimental data. We focus on samples R2 and R4, where the

resistance has been measured down to quite low temperatures, and a meaningful compar-

ison is possible, see Figs. 8 and 9. In this comparison, it has to be borne in mind that

Eq. (10) does not take into account the normal contacts. These cause a contact resistance
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FIG. 7: Temperature-dependent resistance R(T < Tc) predicted by Eq. (10) for ν = 1 and different

N . The smaller is N , the broader is the transition. From the leftmost to the rightmost curve,

N = 4, 7, 19, 37, 61, 91, 127, 169, 217.

(1) which we subtract from the experimental data when comparing to Eq. (10). In addition,

the experimentally measured residual resistance fixes the value of N taken in the respec-

tive comparison. Moreover, Eq. (10) does not take into account the possible destruction of

superconductivity by the normal contacts. Indeed, investigation of the proximity effect at

high-transparency NS interfaces has shown that superconductivity resists the presence of

normal contacts only if the length of the superconductor is much greater than its coherence

length ξ [38]. This is probably the reason why superconductivity is only observed in the

longest ropes. Finally, Eq. (10) only applies to temperatures well below Tc, and in partic-

ular does not capture quasiparticle effects or phonon backscattering. The transition to the

normal-state resistance is not described at this level of theory. Besides N and the LL param-

eter, which is taken to be g = 1.3, another important parameter appearing in the expression

for the resistance is the critical temperature Tc. In principle this could be computed once

the eigenvalue Λ1 of the coupling matrix Λ is known. However, as discussed above, to obtain

a reliable estimate for Λ1 is very difficult. In order to circumvent this problem, we remark

that it is natural to identify Tc with the experimentally determined transition temperature

T ∗. Since now both N and Tc are fixed directly by experimental data, there is only one

remaining adjustable parameter, namely ν. According to our discussion above, the fit is

expected to yield values ν ≈ 1.
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FIG. 8: Temperature dependence of the linear resistance below Tc for sample R2. Open circles

denote experimental data (with subtracted residual resistance corresponding to N = 87), the curve

is the theoretical result for ν = 0.75.
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Tc = 0.12 K, N = 43, ν = 0.16 

FIG. 9: Same as Fig. 8, but for sample R4 with N = 43 and ν = 0.16.

In Figs. 8 and 9 the experimental curves are fitted with Eq. (10) using ν as a fit parameter.

We obtain as optimal fit values ν = 0.75 for sample R2 and ν = 0.16 for sample R4,

respectively. The first is in very good agreement with the expected theoretical value of ν.

For sample R4, the optimal ν is smaller than expected, which may indicate that dissipative

processes are more important in that sample. It is also possible that the screening of Coulomb

interactions is less effective in this narrow rope (where nearly half of the tubes are on the

surface) than in the thicker rope R2. Nevertheless, for both samples, the low-temperature
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resistance agrees quite well, with only one free fit parameter that is found to be of order

unity as expected. The theoretical curves clearly do not provide a good description in the

vicinity of Tc. This is however the expected consequence of the perturbative nature of our

calculation, which breaks down close to Tc due to QPS proliferation. Thus the saturation

observed experimentally around T ≈ T ∗ is not captured. Equation (10) also predicts a

vanishing linear resistance as T → 0. A finite T = 0 resistance is usually expected when,

instead of (or in addition to) bound pairs of QPSs, one also considers single QPS events.

However, the latter are expected to be important only for short 1D systems and have not

been taken into account in our theory. An order-of-magnitude estimate indicates anyway

that their contribution to the resistance is exponentially small due to the large T = 0 value

of µ, and then practically unmeasurable.

We believe that the rather good agreement between the theoretical resistance result (10)

and experimental data at low temperatures as shown in Figs. 8 and 9, given the complexity of

this system, is rather satisfactory. This comparison provides strong evidence that quantum

phase slips have been observed in superconducting nanotube ropes.
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