98 research outputs found

    The potential of mechanism-based bioanalytical tools in ecotoxicological exposure and effect assessment

    Get PDF
    The current challenge to ecotoxicology is to develop tools that allow rapid and cost-efficient detection of those environmental chemicals or their combinations that are responsible for sublethal, chronic toxic effects in exposed organisms. Bioanalytical tools may meet these challenges, particularly if they are mechanism-based. Technically, bioanalytical tools allow rapid and cost-efficient analysis of environmental matrices. Mechanism-based, bioanalytical tools, however, do not only indicate that certain chemicals are there, but—and this is the major advantage of mechanism-based bioanalytical tools (MBBTs)—they indicate that chemicals with a specific mode of toxic action or a specific toxic potential are there. In this way MBBTs bridge exposure and effect assessment and help in a faster identification of the causative agent(s). Several principles of MBBTs, including immunoassays, enzyme inhibition assays, receptor assays and gene induction assays are briefly discussed and their application in processes such as bioassay-directed fractionation is illustrated. The focus of this manuscript is the analytical power of MBBTs in exposure and effect assessment. MBBTs have, however, a much broader potential and can support research on other challenges in ecotoxicology such as mixture effects or multiple effects caused by single pollutants or by various stresses simultaneousl

    Effect of Sequential Isoproturon Pulse Exposure on Scenedesmus vacuolatus

    Get PDF
    Aquatic organisms are typically exposed to fluctuating concentrations of herbicides in streams. To assess the effects on algae of repeated peak exposure to the herbicide isoproturon, we subjected the alga Scenedesmus vacuolatus to two sequential pulse exposure scenarios. Effects on growth and on the inhibition of the effective quantum yield of photosystem II (PSII) were measured. In the first scenario, algae were exposed to short, 5-h pulses at high isoproturon concentrations (400 and 1000 μg/l), each followed by a recovery period of 18 h, while the second scenario consisted of 22.5-h pulses at lower concentrations (60 and 120 μg/l), alternating with short recovery periods (1.5 h). In addition, any changes in the sensitivity of the algae to isoproturon following sequential pulses were examined by determining the growth rate-EC50 prior to and following exposure. In both exposure scenarios, we found that algal growth and its effective quantum yield were systematically inhibited during the exposures and that these effects were reversible. Sequential pulses to isoproturon could be considered a sequence of independent events. Nevertheless, a consequence of inhibited growth during the repeated exposures is the cumulative decrease in biomass production. Furthermore, in the second scenario, when the sequence of long pulses began to approach a scenario of continuous exposure, a slight increase in the tolerance of the algae to isoproturon was observed. These findings indicated that sequential pulses do affect algae during each pulse exposure, even if algae recover between the exposures. These observations could support an improved risk assessment of fluctuating exposures to reversibly acting herbicide

    Adaptive responses in Chlamydomonas reinhardtii

    Get PDF
    The photosynthetic single cellular alga Chlamydomonas reinhardtii has been used as a model organism to examine in detail the physiological, biochemical and molecular processes of photosynthesis, flagella synthesis and movement, mineral stress, interactions between nucleus, chloroplasts and mitochondria and other processes. In this review we summarize part of the current knowledge on adaptive responses in C. reinhardtii when it is exposed to oxidative stress and to changes in light intensity, concentration of minerals, herbicides and metals. The individual responses are linked in order to understand the response of the cell, which is continuously subjected to fluctuations, as a whole

    Characterization of singlet oxygen-accumulating mutants isolated in a screen for altered oxidative stress response in Chlamydomonas reinhardtii

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>When photosynthetic organisms are exposed to harsh environmental conditions such as high light intensities or cold stress, the production of reactive oxygen species like singlet oxygen is stimulated in the chloroplast. In <it>Chlamydomonas reinhardtii </it>singlet oxygen was shown to act as a specific signal inducing the expression of the nuclear glutathione peroxidase gene <it>GPXH/GPX5 </it>during high light stress, but little is known about the cellular mechanisms involved in this response. To investigate components affecting singlet oxygen signaling in <it>C. reinhardtii</it>, a mutant screen was performed.</p> <p>Results</p> <p>Mutants with altered <it>GPXH </it>response were isolated from UV-mutagenized cells containing a <it>GPXH</it>-arylsulfatase reporter gene construct. Out of 5500 clones tested, no mutant deficient in <it>GPXH </it>induction was isolated, whereas several clones showed constitutive high <it>GPXH </it>expression under normal light conditions. Many of these <it>GPXH </it>overexpressor (<it>gox</it>) mutants exhibited higher resistance to oxidative stress conditions whereas others were sensitive to high light intensities. Interestingly, most <it>gox </it>mutants produced increased singlet oxygen levels correlating with high <it>GPXH </it>expression. Furthermore, different patterns of altered photoprotective parameters like non-photochemical quenching, carotenoid contents and α-tocopherol levels were detected in the various <it>gox </it>mutants.</p> <p>Conclusions</p> <p>Screening for mutants with altered <it>GPXH </it>expression resulted in the isolation of many <it>gox </it>mutants with increased singlet oxygen production, showing the relevance of controlling the production of this ROS in photosynthetic organisms. Phenotypic characterization of these <it>gox </it>mutants indicated that the mutations might lead to either stimulated triplet chlorophyll and singlet oxygen formation or reduced detoxification of singlet oxygen in the chloroplast. Furthermore, changes in multiple protection mechanisms might be responsible for high singlet oxygen formation and <it>GPXH </it>expression, which could either result from mutations in multiple loci or in a single gene encoding for a global regulator of cellular photoprotection mechanisms.</p

    Global proteomics analysis of testis and ovary in adult zebrafish ( Danio rerio )

    Get PDF
    The molecular mechanisms controlling sex determination and differentiation in zebrafish (Danio rerio) are largely unknown. A genome-wide analysis may provide comprehensive insights into the processes involved. The mRNA expression in zebrafish gonads has been fairly well studied, but much less data on the corresponding protein expression are available, although the proteins are considered to be more relevant markers of gene function. Because mRNA and protein abundances rarely correlate well, mRNA profiles need to be complemented with the information on protein expression. The work presented here analyzed the proteomes of adult zebrafish gonads by a multidimensional protein identification technology, generating the to-date most populated lists of proteins expressed in mature zebrafish gonads. The acquired proteomics data partially confirmed existing transcriptomics information for several genes, including several novel transcripts. However, disagreements between mRNA and protein abundances were often observed, further stressing the necessity to assess the expression on different levels before drawing conclusions on a certain gene's expression and function. Several gene groups expressed in a sexually dimorphic way in zebrafish gonads were identified. Their potential importance for gonad development and function is discussed. The data gained in the current study provide a basis for further work on elucidating processes occurring during zebrafish development with use of high-throughput proteomic

    Molecular Mechanisms in Ecotoxicology: An Interplay between Environmental Chemistry and Biology

    Get PDF
    A close collaboration between environmental chemistry and biological sciences is required for a complete understanding of ecotoxicological effects. Bioavailability and uptake of pollutants cannot be regarded as isolated chemical or biological questions. Knowledge of the effective concentrations in the organism or at the target site(s) is essential to link the fate and effects of a chemical and is a prerequisite for quantitative investigation of the modes of toxic action. These modes of action need to be unraveled using whole-organism or in vitro systems in order to be able to develop specific biomarkers and biosensors that can be applied as early warning systems. Our mode-of-action-based approaches, in which chemical and biological analytical tools are combined, should improve the understanding of ecotoxicological effects and should be implemented in the future in risk assessment

    Function and regulation of the glutathione peroxidase homologous gene GPXH

    Get PDF
    When exposed to strong sunlight, photosynthetic organisms encounter photooxidative stress by the increased production of reactive oxygen species causing harmful damages to proteins and membranes. Consequently, a fast and specific induction of defense mechanisms is required to protect the organism from cell death. In Chlamydomonas reinhardtii, the glutathione peroxidase homologous gene GPXH/GPX5 was shown to be specifically upregulated by singlet oxygen formed during high light conditions presumably to prevent the accumulation of lipid hydroperoxides and membrane damage. We now showed that the GPXH protein is a thioredoxin-dependent peroxidase catalyzing the reduction of hydrogen peroxide and organic hydroperoxides. Furthermore, the GPXH gene seems to encode a dual-targeted protein, predicted to be localized both in the chloroplast and the cytoplasm, which is active with either plastidic TRXy or cytosolic TRXh1. Putative dual-targeting is achieved by alternative transcription and translation start sites expressed independently from either a TATA-box or an Initiator core promoter. Expression of both transcripts was upregulated by photooxidative stress even though with different strengths. The induction required the presence of the core promoter sequences and multiple upstream regulatory elements including a Sp1-like element and an earlier identified CRE/AP-1 homologous sequence. This element was further characterized by mutation analysis but could not be confirmed to be a consensus CRE or AP1 element. Instead, it rather seems to be another member of the large group of TGAC-transcription factor binding sites found to be involved in the response of different genes to oxidative stres
    corecore