314 research outputs found

    Autoimmunization of Ewes Against Pregnancy-associated Glycoproteins Does Not Interfere with the Establishment and Maintenance of Pregnancy

    Get PDF
    doi:10.1017/S1751731109004145Pregnancy-associated glycoproteins (PAGs) are a large grouping of placental proteins that belong to the aspartic peptidase gene family. Although useful to detect pregnancy in ruminant species, the function of these molecules is unclear. Several PAGs expressed by trophoblast binucleate cells can enter the maternal circulation, suggesting that they could have a systemic role in altering maternal physiology. The objective of this work was to examine whether these circulating placental antigens were important in pregnancy by actively immunizing ewes against them. PAGs were purified by pepstatin-affinity chromatography and conjugated to the immunogenic protein, keyhole limpet hemocyanin (KLH). Ewes were immunized with PAG-KLH conjugate (n522) or with KLH alone (n59), and bred to intact rams. Blood samples, collected on Day 0 (day of estrus), Day 10, Days 15 to 25 and weekly throughout pregnancy, were analyzed for PAG by an ELISA. On Day 30, pregnancy was confirmed by ultrasound. Ewes immunized against PAG-KLH produced a range of reactive anti-PAG titers, whereas all immunized ewes had high anti-KLH immunoreactivity. PAGs became detectable in the anti-KLH (control) ewes at Day 21.662.2 of pregnancy. Those ewes immunized against PAGs (n57), that had very low immunoreactivity toward PAGs, had measurable PAG by Day 22.961.3, and their PAG serum profiles throughout pregnancy did not differ from the controls. Those exhibiting moderate to high anti-PAG immunoreactivity (n515), had significantly lower PAG concentrations than controls, with antigen not becoming detectable until Day 48.1615.6. The decrease in circulating PAG in the immunized animals did not correlate with changes in pregnancy rates, lamb number or lamb birth weight. These results suggest that while PAGs may play a role in maintaining pregnancy, their major contribution is likely to be at the fetal-maternal interface. Their actions at extra-placental sites are presumably of more secondary importance.This work was supported by NIH Grant HD21896 and the Animal Reproductive Biology Group of the University of Missouri Food for the 21st Century Program

    Artificial intelligence for renal cancer: From imaging to histology and beyond

    Get PDF
    Artificial intelligence (AI) has made considerable progress within the last decade and is the subject of contemporary literature. This trend is driven by improved computational abilities and increasing amounts of complex data that allow for new approaches in analysis and interpretation. Renal cell carcinoma (RCC) has a rising incidence since most tumors are now detected at an earlier stage due to improved imaging. This creates considerable challenges as approximately 10%–17% of kidney tumors are designated as benign in histopathological evaluation; however, certain co-morbid populations (the obese and elderly) have an increased peri-interventional risk. AI offers an alternative solution by helping to optimize precision and guidance for diagnostic and therapeutic decisions. The narrative review introduced basic principles and provide a comprehensive overview of current AI techniques for RCC. Currently, AI applications can be found in any aspect of RCC management including diagnostics, perioperative care, pathology, and follow-up. Most commonly applied models include neural networks, random forest, support vector machines, and regression. However, for implementation in daily practice, health care providers need to develop a basic understanding and establish interdisciplinary collaborations in order to standardize datasets, define meaningful endpoints, and unify interpretation

    Interferon regulatory factor 8-deficiency determines massive neutrophil recruitment but T cell defect in fast growing granulomas during tuberculosis

    Get PDF
    Following Mycobacterium tuberculosis (Mtb) infection, immune cell recruitment in lungs is pivotal in establishing protective immunity through granuloma formation and neogenesis of lymphoid structures (LS). Interferon regulatory factor-8 (IRF-8) plays an important role in host defense against Mtb, although the mechanisms driving anti-mycobacterial immunity remain unclear. In this study, IRF-8 deficient mice (IRF-8−/−) were aerogenously infected with a low-dose Mtb Erdman virulent strain and the course of infection was compared with that induced in wild-type (WT-B6) counterparts. Tuberculosis (TB) progression was examined in both groups using pathological, microbiological and immunological parameters. Following Mtb exposure, the bacterial load in lungs and spleens progressed comparably in the two groups for two weeks, after which IRF-8−/− mice developed a fatal acute TB whereas in WT-B6 the disease reached a chronic stage. In lungs of IRF-8−/−, uncontrolled growth of pulmonary granulomas and impaired development of LS were observed, associated with unbalanced homeostatic chemokines, progressive loss of infiltrating T lymphocytes and massive prevalence of neutrophils at late infection stages. Our data define IRF-8 as an essential factor for the maintenance of proper immune cell recruitment in granulomas and LS required to restrain Mtb infection. Moreover, IRF-8−/− mice, relying on a common human and mouse genetic mutation linked to susceptibility/severity of mycobacterial diseases, represent a valuable model of acute TB for comparative studies with chronically-infected congenic WT-B6 for dissecting protective and pathological immune reactions

    Comparison of the intracellular trafficking itinerary of ctla-4 orthologues.

    Get PDF
    CTLA-4 is an essential inhibitor of T cell immune responses. At steady state, most CTLA-4 resides in intracellular compartments due to constitutive internalisation mediated via a tyrosine based endocytic motif (YVKM) within the cytoplasmic domain. This domain is highly conserved in mammals suggesting strong selective pressure. In contrast, the C-terminal domain varies considerably in non-mammals such as fish, xenopus and birds. We compared the ability of the C-terminus of these species to direct the trafficking of CTLA-4 with human CTLA-4. Using a chimeric approach, endocytosis was found to be conserved between human, xenopus and chicken CTLA-4 but was reduced substantially in trout CTLA-4, which lacks the conserved YXXM motif. Nevertheless, we identified an alternative YXXF motif in trout CTLA-4 that permitted limited endocytosis. Post-internalisation, CTLA-4 was either recycled or targeted for degradation. Human and chicken CTLA-4, which contain a YVKM motif, showed efficient recycling compared to xenopus CTLA-4 which contains a less efficient YEKM motif. Specific mutation of this motif in human CTLA-4 reduced receptor recycling. These findings suggest evolutionary development in the endocytic and recycling potential of CTLA-4, which may facilitate more refined functions of CTLA-4 within the mammalian immune system

    B Cell: T Cell Interactions Occur within Hepatic Granulomas during Experimental Visceral Leishmaniasis

    Get PDF
    Hepatic resistance to Leishmania donovani infection in mice is associated with the development of granulomas, in which a variety of lymphoid and non-lymphoid populations accumulate. Although previous studies have identified B cells in hepatic granulomas and functional studies in B cell-deficient mice have suggested a role for B cells in the control of experimental visceral leishmaniasis, little is known about the behaviour of B cells in the granuloma microenvironment. Here, we first compared the hepatic B cell population in infected mice, where ≈60% of B cells are located within granulomas, with that of naïve mice. In infected mice, there was a small increase in mIgMlomIgD+ mature B2 cells, but no enrichment of B cells with regulatory phenotype or function compared to the naïve hepatic B cell population, as assessed by CD1d and CD5 expression and by IL-10 production. Using 2-photon microscopy to quantify the entire intra-granuloma B cell population, in conjunction with the adoptive transfer of polyclonal and HEL-specific BCR-transgenic B cells isolated from L. donovani-infected mice, we demonstrated that B cells accumulate in granulomas over time in an antigen-independent manner. Intra-vital dynamic imaging was used to demonstrate that within the polyclonal B cell population obtained from L. donovani-infected mice, the frequency of B cells that made multiple long contacts with endogenous T cells was greater than that observed using HEL-specific B cells obtained from the same inflammatory environment. These data indicate, therefore, that a subset of this polyclonal B cell population is capable of making cognate interactions with T cells within this unique environment, and provide the first insights into the dynamics of B cells within an inflammatory site

    Association Between Response to Etrolizumab and Expression of Integrin αE and Granzyme A in Colon Biopsies of Patients With Ulcerative Colitis

    Get PDF
    Background & AimsEtrolizumab is a humanized monoclonal antibody against the β7 integrin subunit that has shown efficacy vs placebo in patients with moderate to severely active ulcerative colitis (UC). Patients with colon tissues that expressed high levels of the integrin αE gene (ITGAE) appeared to have the best response. We compared differences in colonic expression of ITGAE and other genes between patients who achieved clinical remission with etrolizumab vs those who did.MethodsWe performed a retrospective analysis of data collected from 110 patients with UC who participated in a phase 2 placebo-controlled trial of etrolizumab, as well as from 21 patients with UC or without inflammatory bowel disease (controls) enrolled in an observational study at a separate site. Colon biopsies were collected from patients in both studies and analyzed by immunohistochemistry and gene expression profiling. Mononuclear cells were isolated and analyzed by flow cytometry. We identified biomarkers associated with response to etrolizumab. In the placebo-controlled trial, clinical remission was defined as total Mayo Clinic Score ≤2, with no individual subscore >1, and mucosal healing was defined as endoscopic score ≤1.ResultsColon tissues collected at baseline from patients who had a clinical response to etrolizumab expressed higher levels of T-cell−associated genes than patients who did not respond (P < .05). Colonic CD4+ integrin αE+ cells from patients with UC expressed higher levels of granzyme A messenger RNA (GZMA mRNA) than CD4+ αE− cells (P < .0001); granzyme A and integrin αE protein were detected in the same cells. Of patients receiving 100 mg etrolizumab, a higher proportion of those with high levels of GZMA mRNA (41%) or ITGAE mRNA (38%) than those with low levels of GZMA (6%) or ITGAE mRNA (13%) achieved clinical remission (P < .05) and mucosal healing (41% GZMAhigh vs 19% GZMAlow and 44% ITGAEhigh vs 19% ITGAElow). Compared with ITGAElow and GZMAlow patients, patients with ITGAEhigh and GZMAhigh had higher baseline numbers of epithelial crypt-associated integrin αE+ cells (P < .01 for both), but a smaller number of crypt-associated integrin αE+ cells after etrolizumab treatment (P < .05 for both). After 10 weeks of etrolizumab treatment, expression of genes associated with T-cell activation and genes encoding inflammatory cytokines decreased by 40%−80% from baseline (P < .05) in patients with colon tissues expressing high levels of GZMA at baseline.ConclusionsLevels of GZMA and ITGAE mRNAs in colon tissues can identify patients with UC who are most likely to benefit from etrolizumab; expression levels decrease with etrolizumab administration in biomarkerhigh patients. Larger, prospective studies of markers are needed to assess their clinical value

    CD152 (CTLA-4) Determines CD4 T Cell Migration In Vitro and In Vivo

    Get PDF
    BACKGROUND:Migration of antigen-experienced T cells to secondary lymphoid organs and the site of antigenic-challenge is a mandatory prerequisite for the precise functioning of adaptive immune responses. The surface molecule CD152 (CTLA-4) is mostly considered as a negative regulator of T cell activation during immune responses. It is currently unknown whether CD152 can also influence chemokine-driven T cell migration. METHODOLOGY/PRINCIPAL FINDINGS:We analyzed the consequences of CD152 signaling on Th cell migration using chemotaxis assays in vitro and radioactive cell tracking in vivo. We show here that the genetic and serological inactivation of CD152 in Th1 cells reduced migration towards CCL4, CXCL12 and CCL19, but not CXCL9, in a G-protein dependent manner. In addition, retroviral transduction of CD152 cDNA into CD152 negative cells restored Th1 cell migration. Crosslinking of CD152 together with CD3 and CD28 stimulation on activated Th1 cells increased expression of the chemokine receptors CCR5 and CCR7, which in turn enhanced cell migration. Using sensitive liposome technology, we show that mature dendritic cells but not activated B cells were potent at inducing surface CD152 expression and the CD152-mediated migration-enhancing signals. Importantly, migration of CD152 positive Th1 lymphocytes in in vivo experiments increased more than 200% as compared to CD152 negative counterparts showing that indeed CD152 orchestrates specific migration of selected Th1 cells to sites of inflammation and antigenic challenge in vivo. CONCLUSIONS/SIGNIFICANCE:We show here, that CD152 signaling does not just silence cells, but selects individual ones for migration. This novel activity of CD152 adds to the already significant role of CD152 in controlling peripheral immune responses by allowing T cells to localize correctly during infection. It also suggests that interference with CD152 signaling provides a tool for altering the cellular composition at sites of inflammation and antigenic challenge

    Visualizing early splenic memory CD8+ T cells reactivation against intracellular bacteria in the mouse

    Get PDF
    International audienceMemory CD8(+) T cells represent an important effector arm of the immune response in maintaining long-lived protective immunity against viruses and some intracellular bacteria such as Listeria monocytogenes (L.m). Memory CD8(+) T cells are endowed with enhanced antimicrobial effector functions that perfectly tail them to rapidly eradicate invading pathogens. It is largely accepted that these functions are sufficient to explain how memory CD8(+) T cells can mediate rapid protection. However, it is important to point out that such improved functional features would be useless if memory cells were unable to rapidly find the pathogen loaded/infected cells within the infected organ. Growing evidences suggest that the anatomy of secondary lymphoid organs (SLOs) fosters the cellular interactions required to initiate naive adaptive immune responses. However, very little is known on how the SLOs structures regulate memory immune responses. Using Listeria monocytogenes (L.m) as a murine infection model and imaging techniques, we have investigated if and how the architecture of the spleen plays a role in the reactivation of memory CD8(+) T cells and the subsequent control of L.m growth. We observed that in the mouse, memory CD8(+) T cells start to control L.m burden 6 hours after the challenge infection. At this very early time point, L.m-specific and non-specific memory CD8(+) T cells localize in the splenic red pulp and form clusters around L.m infected cells while naïve CD8(+) T cells remain in the white pulp. Within these clusters that only last few hours, memory CD8(+) T produce inflammatory cytokines such as IFN-gamma and CCL3 nearby infected myeloid cells known to be crucial for L.m killing. Altogether, we describe how memory CD8(+) T cells trafficking properties and the splenic micro-anatomy conjugate to create a spatio-temporal window during which memory CD8(+) T cells provide a local response by secreting effector molecules around infected cells
    corecore