136 research outputs found

    Taylor-Couette turbulence at radius ratio η=0.5\eta=0.5: scaling, flow structures and plumes

    Get PDF
    Using high-resolution particle image velocimetry we measure velocity profiles, the wind Reynolds number and characteristics of turbulent plumes in Taylor-Couette flow for a radius ratio of 0.5 and Taylor number of up to 6.2⋅1096.2\cdot10^9. The extracted angular velocity profiles follow a log-law more closely than the azimuthal velocity profiles due to the strong curvature of this η=0.5\eta=0.5 setup. The scaling of the wind Reynolds number with the Taylor number agrees with the theoretically predicted 3/7-scaling for the classical turbulent regime, which is much more pronounced than for the well-explored η=0.71\eta=0.71 case, for which the ultimate regime sets in at much lower Ta. By measuring at varying axial positions, roll structures are found for counter-rotation while no clear coherent structures are seen for pure inner cylinder rotation. In addition, turbulent plumes coming from the inner and outer cylinder are investigated. For pure inner cylinder rotation, the plumes in the radial velocity move away from the inner cylinder, while the plumes in the azimuthal velocity mainly move away from the outer cylinder. For counter-rotation, the mean radial flow in the roll structures strongly affects the direction and intensity of the turbulent plumes. Furthermore, it is experimentally confirmed that in regions where plumes are emitted, boundary layer profiles with a logarithmic signature are created

    GEOFLOW: simulation of convection in a spherical shell under central force field

    Get PDF
    Time-dependent dynamical simulations related to convective motion in a spherical gap under a central force field due to the dielectrophoretic effect are discussed. This work is part of the preparation of the GEOFLOW-experiment which is planned to run in a microgravity environment. The goal of this experiment is the simulation of large-scale convective motion in a geophysical or astrophysical framework. This problem is new because of, on the one hand, the nature of the force field (dielectrophoretic effect) and, on another hand, the high degree of symmetries of the system, e.g. the top-bottom reflection. Thus, the validation of this simulation with well-known results is not possible. The questions concerning the influence of the dielectrophoretic force and the possibility to reproduce the theoretically expected motions in the astrophysical framework, are open. In the first part, we study the system in terrestrial conditions: the unidirectional Earth's force is superimposed on the central dielectrophoretic force field to compare with the laboratory experiments during the development of the equipment. In the second part, the GEOFLOW-experiment simulations in weightless conditions are compared with theoretical studies in the astrophysical framework's, in the first instance a fluid under a self-gravitating force field. We present complex time-dependent dynamics, where the dielectrophoretic force field causes significant differences in the flow compared to the case that does not involve this force field

    Sheet-like and plume-like thermal flow in a spherical convection experiment performed under microgravity

    Get PDF
    We introduce, in spherical geometry, experiments on electro-hydrodynamic driven Rayleigh-BĂ©nard convection that have been performed for both temperature-independent (‘GeoFlow I') and temperature-dependent fluid viscosity properties (‘GeoFlow II') with a measured viscosity contrast up to 1.5. To set up a self-gravitating force field, we use a high-voltage potential between the inner and outer boundaries and a dielectric insulating liquid; the experiments were performed under microgravity conditions on the International Space Station. We further run numerical simulations in three-dimensional spherical geometry to reproduce the results obtained in the ‘GeoFlow' experiments. We use Wollaston prism shearing interferometry for flow visualization - an optical method producing fringe pattern images. The flow patterns differ between our two experiments. In ‘GeoFlow I', we see a sheet-like thermal flow. In this case convection patterns have been successfully reproduced by three-dimensional numerical simulations using two different and independently developed codes. In contrast, in ‘GeoFlow II', we obtain plume-like structures. Interestingly, numerical simulations do not yield this type of solution for the low viscosity contrast realized in the experiment. However, using a viscosity contrast of two orders of magnitude or higher, we can reproduce the patterns obtained in the ‘GeoFlow II' experiment, from which we conclude that nonlinear effects shift the effective viscosity rati

    Superfluid spherical Couette flow

    Full text link
    We solve numerically for the first time the two-fluid, Hall--Vinen--Bekarevich--Khalatnikov (HVBK) equations for a He-II-like superfluid contained in a differentially rotating, spherical shell, generalizing previous simulations of viscous spherical Couette flow (SCF) and superfluid Taylor--Couette flow. In axisymmetric superfluid SCF, the number of meridional circulation cells multiplies as \Rey increases, and their shapes become more complex, especially in the superfluid component, with multiple secondary cells arising for \Rey > 10^3. The torque exerted by the normal component is approximately three times greater in a superfluid with anisotropic Hall--Vinen (HV) mutual friction than in a classical viscous fluid or a superfluid with isotropic Gorter-Mellink (GM) mutual friction. HV mutual friction also tends to "pinch" meridional circulation cells more than GM mutual friction. The boundary condition on the superfluid component, whether no slip or perfect slip, does not affect the large-scale structure of the flow appreciably, but it does alter the cores of the circulation cells, especially at lower \Rey. As \Rey increases, and after initial transients die away, the mutual friction force dominates the vortex tension, and the streamlines of the superfluid and normal fluid components increasingly resemble each other. In nonaxisymmetric superfluid SCF, three-dimensional vortex structures are classified according to topological invariants.Comment: Accepted for publication in the Journal of Fluid Mechanic

    Global long-term monitoring of the ozone layer - a prerequisite for predictions

    Get PDF
    Although the Montreal Protocol now controls the production and emission of ozone depleting substances, the timing of ozone recovery is unclear. There are many other factors affecting the ozone layer, in particular climate change is expected to modify the speed of re-creation of the ozone layer. Therefore, long-term observations are needed to monitor the further evolution of the stratospheric ozone layer. Measurements from satellite instruments provide global coverage and are supplementary to selective ground-based observations. The combination of data derived from different space-borne instruments is needed to produce homogeneous and consistent long-term data records. They are required for robust investigations including trend analysis. For the first time global total ozone columns from three European satellite sensors GOME (ERS-2), SCIAMACHY (ENVISAT), and GOME-2 (METOP-A) are combined and added up to a continuous time series starting in June 1995. On the one hand it is important to monitor the consequences of the Montreal Protocol and its amendments; on the other hand multi-year observations provide the basis for the evaluation of numerical models describing atmospheric processes, which are also used for prognostic studies to assess the future development. This paper gives some examples of how to use satellite data products to evaluate model results with respective data derived from observations, and to disclose the abilities and deficiencies of atmospheric models. In particular, multi-year mean values derived from the Chemistry-Climate Model E39C-A are used to check climatological values and the respective standard deviations

    On the application of hot wires and pitot tubes in pipe and channel flows

    Get PDF
    Paper presented to the 10th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Florida, 14-16 July 2014.This paper looks mainly at two measuring techniques, namely, the hot-wire anemometer and the pitot tube when utilized in wall-bounded shear flows. Additional heat losses occur from the hot wires in presence of walls that are not accounted for in the calibration process of the wires. Because of this, corrections for erroneous in fluid velocity measured by the hot wire in the wall proximity are to be carried out. Similarly, when the pitot tube is applied to flow measurements, the mean shear gradient and the wall proximity come to play major roles of incorrect readings. Its size is therefore to be chosen such that corrections for the shear gradient and the wall proximity are minimal. The paper outlines, therefore, corrections applied to the pitot tube measured data in both pipe and channel flows. Available corrections are adopted in this paper to both the pipe and the channel flow measured data, yielding pitot tube results that are comparable to those of the hot wire and this was demonstrated by comparing the results corrected to the socalled the logarithmic velocity profile.cf201

    GeoFlow: European Microgravity Experiments on Thermal Convection in Rotating Spherical Shells under influence of Central Force Field

    Get PDF
    Abstract We report on the status of preparatory work in the GeoFlow Experiment which will take place on board Columbus Orbital Facility (COF) at the International Space Station (ISS). GeoFlow focus on investigations of the stability and dynamics of convective spherical gap flows under influence of a central force field. To exclude the unidirectional gravitational force which acts on earth's surface the planed long-time measurements have to take place in microgravity environment. After a introduction and an overview of experiment hardware preparation status which includes application of measurement techniques, preparatory 3D numerical flow simulations as well as experimental work and the way of experiment data analysis are presented. Also some aspects of the experiment operation phase will be given. The paper is then closed with concluding remarks and an outlook on possible future GeoFlow reflight campaigns
    • 

    corecore