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Abstract. Time-dependent dynamical simulations related to
convective motion in a spherical gap under a central force
field due to the dielectrophoretic effect are discussed. This
work is part of the preparation of the GEOFLOW-experiment
which is planned to run in a microgravity environment. The
goal of this experiment is the simulation of large-scale con-
vective motion in a geophysical or astrophysical framework.
This problem is new because of, on the one hand, the nature
of the force field (dielectrophoretic effect) and, on another
hand, the high degree of symmetries of the system, e.g. the
top-bottom reflection. Thus, the validation of this simulation
with well-known results is not possible. The questions con-
cerning the influence of the dielectrophoretic force and the
possibility to reproduce the theoretically expected motions
in the astrophysical framework, are open. In the first part, we
study the system in terrestrial conditions: the unidirectional
Earth’s force is superimposed on the central dielectrophoretic
force field to compare with the laboratory experiments dur-
ing the development of the equipment. In the second part,
the GEOFLOW-experiment simulations in weightless condi-
tions are compared with theoretical studies in the astrophys-
ical framework’s, in the first instance a fluid under a self-
gravitating force field. We present complex time-dependent
dynamics, where the dielectrophoretic force field causes sig-
nificant differences in the flow compared to the case that does
not involve this force field.

1 Introduction

The present paper shows results of investigations of the influ-
ence of a radial force field, produced by the dielectrophoretic
effect (Pohl, 1978) in spherical Rayleigh-B́enard convection
using a three-dimensional code and bifurcation analysis. It is
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the preparatory work for an experimental set-up: the convec-
tive motion in a spherical gap under the influence of an ar-
tificial central force field. This experiment is planned to run
on the ISS (International Space Station) under microgravity
conditions. Experimental details can be found inEgbers et al.
(2003). The experimental cell is formed by an outer glass
sphere, which can be cooled, and an inner sphere, which can
uniformly heated within (Fig.1). The temperature difference
is maintained constant withT1>T2. The central force field is
generated by applying a high voltage ('10 kV) between in-
ner and outer sphere. Using a dielectric fluid (silicon oil), the
resulting central dielectrophoretic force field is proportional
to 1/r5. Currently, three different viscosities of fluid silicone
oils and three different inner radii (R1) are available for the
experiment (Table1), resulting in three values of the Prandtl
number,Pr, and also three aspect ratios,η, respectively. The
“central” Rayleigh numberRac can vary over a large range
by varying the voltage (Table1).

The possible nondimensional parameters have similar val-
ues to the Earth’s mantle ones, in particular the aspect ra-
tio, the Rayleigh number and, in both cases (GEOFLOW and
Earth’s mantle),Pr�1. The aspect ratio of the Earth’s outer
core (ηe=0.34) is close to the GEOFLOW’s ratio too. But the
Prandtl number (0.1<Pr<10) is smaller than for the experi-
ment and the very large Rayleigh number (Rae>1026) cannot
be achieved in the experiment. However, the rapid decay of
the dielectrophoretic force field (1/r5 variations) can better
represent the gravity field of the outer core (1/r2 variations)
than the linear variation of the Earth’s mantle gravity field.

Although the GEOFLOW-experiment allows the system
to rotate, we consider here the non-rotating case in contrast
to the Earth’s case where the Taylor number plays a relevant
role. This limiting case is motivated, on one hand, by the rich
dynamics expected and, on another hand, by the possibility
to interpret the results in theoretical way using group theory
for the spherical symmetry: theO(3) group.
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Fig. 1. Set-up of the GEOFLOW-experiment.

To obtain a perfect spherical symmetry, we have also
neglected the thin axis supporting the inner sphere in the
GEOFLOW-experiment as shown in Fig.1. The thin axis
will be taken into account in future works as a perturbation
of the perfect case. Besides theoretical aspects, without this
symmetry we could not use a pseudo-spectral method for the
numerical computation, and the CPU time would then in-
crease dramatically.

First results of numerical investigations, corresponding to
convection in the rotating or non-rotating spherical gap under
weightlessness conditions are published inTravnikov et al.
(2003) and Travnikov (2004). These papers deal with the
calculation of the basic flow, stability analysis and point out
that the GEOFLOW-experiment can reproduce the differ-
ent steady-states and rotating waves, which arise for a self-
gravitating case (1/r2 force field). Nevertheless, it is very
difficult to validate these results with terrestrial experiments
or well-known results, because the Earth’s gravity field has
a non-negligible influence, in particular for the non-rotating
case where a lot of symmetry is broken. That is why we aim
at simulating the system under two forces: the axial gravity
force and the central dielectrophoretic force. Furthermore,
we take the opportunity to point out the effect of the di-
electrophoretic force compared with experimental/numerical
work without this field (Futterer et al., 2004).

The second part of this paper considers the weightlessness
case and it focuses on the comparison between the motion
due to the dielectrophoretic field (1/r5 radial dependence)
and the central gravity field (1/r2 radial dependence), which
corresponds, for example, to the Earth’s outer core. The 1/r2

case has shown very rich dynamics, in particular the occur-
rence of motion reversals (Friedrich and Haken, 1986). This
motion has astrophysical relevance because it can help to
understand quasi-periodic phenomena such the Earth’s mag-

netic field reversal. BecauseChossat and Guyard(1996) have
pointed out that these reversal motions (or heteroclinic cy-
cles) are due to the spherical symmetry, we expect such dy-
namics for the 1/r5 field force too. The requirements on the
GEOFLOW parameters which lead to possible heteroclinic
cycles, are determined inBeltrame et al.(2003a) and Bel-
trame and Egbers(2004). The expected dynamics can be the
same type as for the 1/r2 case (Beltrame and Egbers, 2005)
or can be new types of dynamics (Beltrame, 2006a1). In any
cases, the dynamics are poorly known for both astrophysi-
cal (1/r2) and dielectrophoretic (1/r5) fields. Beyond these
theoretical results, we will check the range of parameters for
which these dynamics can be observed in GEOFLOW frame-
work.

Part I

Terrestrial conditions
Four main non-dimensional numbers are necessary to de-
scribe the phenomenon: the radius ratioη=

R1
R2

, the Prandtl

numberPr= ν
κ
, the Rayleigh numberRag=

αg1T R3
2

νκ
mea-

suring the gravity force and the central Rayleigh number
Rac=

2ε0εrγ
ρ0νκ

V 21T measuring the dielectrophoretic force (ε0
is the vacuum dielectric constant.) The notations are as fol-
lows: R1 andR2 are the radii of both spheres,α is the coeffi-
cient of volume expansion,ν the viscosity,κ the thermal con-
ductivity andρ0 the density. Furthermore,εr is the dielectric
constant,V the effective voltage andγ the dielectric variabil-
ity. This last constant is related to the dielectric constant lin-
ear dependence on the temperature:ε=ε0εr(1−γ (T1−T2)).
The investigation is performed forη=0.5, Pr=42.81 (sil-
icone oil M1). The temperature difference varies between
1T =2 and1T =8 K. The flow structure then depends on
the voltageV for fixed1T (Rag).

The goal of this part is to perform a numerical investiga-
tion of the influence of a fast oscillating electric field on the
convective flow in the spherical gap in a terrestrial laboratory.

2 Mathematical background

2.1 Basic equations

We consider an incompressible, Newtonian fluid under the
Boussinesq approximation. The force acting on the vol-
ume element of the dielectric medium, consists of three
parts: Coulomb forceFc=ρf rE (ρf r free charge density),
dielectrophoretic forceFd=−

1
2E2

∇ε and the gradient part

1Beltrame, P.: Intermittency between the Modes 3 and 4 near
the onset of convection in a spherical shell under dielectrophoretic
force, J. Adv. Space Res., in review, 2006a.
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Table 1. Mean physical and nondimensional parameters of GEOFLOW-experiment.

Experiment parameters

Inner radius R1 8.1−13.5 mm

Outer radius R2 27 mm

Temperature Difference 1T 2−6 K

Voltage difference V 0−12 kV

Fluid properties (at 25C) M1 M2 M3

Density ρ0 0.90 0.92 0.94 g cm−3

Kinematic viscosity ν 3 5 10 mm2 s−1

Volume expansion coeff. α 1.11 1.08 1.03 10−3 K−1

Thermal diffusivity κ 77×10−3 mm2 s−1

Relative dielectric constant εr 2.6 (at 800 Hz)

Adimensional parameters

Prandtl No. Pr 42(M1) 107(M2) 205(M3)

Aspect ratio η 0.3 0.4 0.5

Rayleigh No. (axisymmetric) Rag 4×106

Rayleigh No. (central electric field) Rac 103
−107

1
2∇

(
ρ ∂ε

∂ρ
E2

)
. The last term can be combined with the pres-

sure gradient. It can be shown that if the period of the Al-
ternate Current (a.c.) electric field is much smaller than the
relaxation time of free charge, the Coulomb force can be ne-
glected. The detailed theory of the electrodynamics for this
problem can be found inYavorskaya et al.(1984).

The basic equations are the Navier-Stokes and Energy
equations for an incompressible fluid, used here in a dimen-
sionless version based on the following scaling:r=R2r

∗ for
length,T −T2=1T T ∗ for temperature,U=

κ
R2

U∗ for veloc-

ity andt=
R2

2
κ

t∗ for time.
The resulting system of non-dimensional equations (the

superscript stars have been dropped)

Pr−1

[
∂U
∂t

+ (U.∇)U

]
= − ∇Peff + RagT ez

+
Rac

β2

T

r5
er + ∇

2U (1)

∂T

∂t
+ U · ∇T = ∇

2T (2)

∇ · U = 0 (3)

with β=
R2−R1

R1
together with no-slip boundary conditions for

velocity components and constant temperatures on surfaces
(T1>T2) needs to be solved.

2.2 Numerical method

As mentioned in the introduction, the axis present in the ex-
periment is neglected and then the domain is a perfect spher-
ical shell. Thus the potentials of the poloidal-toroidal rep-
resentations of the divergence-free velocity field (Eq.3) to-
gether with the temperature are expanded in spherical har-
monics:

S(r, ϑ, ϕ) =

LU∑
`=1

M∑
m=0

a`m(r)Pm
` (cosϑ)eimϕ, (4)

with Pm
` the Legendre polynomials andS an unknown scalar

function. Each radiala`m(r) function is discretized using the
first kind Chebyshev polynomials Tk:

a`m(r) =

KU+2∑
k=1

bk`mTk−1(r). (5)

The numbers KU, LU and M are cut off parameters.
The differentiation operators and the non-linear terms are

computed using the well-known pseudo spectral method
(Canuto et al., 1987). Its principle is to switch back and
forth between spectral and real space: spectral space to do
the derivatives and collocation points in real space to do the
multiplications of the non-linear terms. The time-stepping
is implemented using a second-order Runge-Kutta method,
modified to treat diffusive terms implicitly. The detail of
the numerical scheme is described in paper fromHollerbach
(2000).
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Fig. 2. Stationary flow: stream function forPr=42.81, η=0.5,
Rag=4.0×106 (1T =4K), Rac=0 (left) and Rac=4.0×104

(right).

The simulations, in this part, are undertaken with KU=60
(number of collocation points of the radial variable),
LU=280 (number of the spherical harmonics) and M=0
(since the problem is axisymmetric.) The time step is around
5×10−7. In this framework, we have needed several hours
on a PowerPC (IBM F7040-671) CPU to obtain periodic so-
lutions.

3 Results

In the case without an electric field a stationary flow of natu-
ral convection only can be observed (Fig.2). This basic flow
occurs because the gravity and the temperature gradient vec-
tors are not parallel in comparison with the classical plane
or spherical Rayleigh-B́enard convection without rotation. If
the electric field is applied, the flow remains stationary as
long as one is below a critical voltage for the fixed1T .

For values larger than the critical voltageV c the flow be-
comes oscillatory. An example of the oscillating state can be
seen in Fig.3 which shows the behaviour of the temperature
spectral coefficient and the kinetic energy. Figure4 shows
the time development of the stream function. This motion is
characterized by the formation and decay of a vortex near the
north pole of the spherical system.

These results can be compared with the experimental re-
sults fromAmara et al.(2001) who have found that the flow
“becomes unstable to toroidal or spiral rolls that form near
the inner sphere and travel vertically upwards when1T and
1V are sufficiently large.” They have performed investiga-
tions for the silicon oil DC-200 withPr=10.5 (we have
Pr=42.81) andη=0.37 (we haveη=0.5). The comparison
with the experimental results shows the similar monotoni-
cally increasing of the frequency with1T, but in contrast to

Amara et al.(2001) the frequency depends slightly on the
voltage V (Fig.5).

Noticing that the criticalRac
g of the oscillations onset is a

decreasing function ofRac, we can thus conclude thatRac

plays a relevant role for this instability but the frequency de-
pends essentially on Rag.

Finally, let us mention another study simulating the super-
position of vertical and central force fields using magnetic
fluids as described inFrüh (2005). The magnetic field pro-
duced approximatively a central 1/r5-dependent field and
in terrestrial conditions, the simulation resulted in regular
oscillations where two kinds of vortices were in competi-
tion. The dynamics are more complex than our case and
the geometry of vortices is not similar. These differences
are expected since many differences exist between both ex-
periments: among others no perfect central-symmetry of the
field in Früh (2005) and different Rayleigh number values.
However, their oscillating dynamics are reminiscent of our
results, indicating that such an instability seems a robust phe-
nomenon.

Part II

Microgravity environment
One important aspect of the GEOFLOW-experiment is the
utilisation of a central force field, thus the spherical sym-
metry is respected. In the non-rotating case, the system
is paradigmatic for theO(3)-equivariant bifurcation theory.
The advantage to consider a perfect symmetry is that it gives
a rich structure to the bifurcation problem. Furthermore, as
Porter and Knobloch(2001) have pointed out, a lot of inter-
esting dynamics are the consequence of symmetry imperfec-
tions and can be treated as a perturbation of the perfect sym-
metry using so-called perturbation theory. In our case, the
imperfections can be due to the non-uniformity of the force
field, or the presence of the thin axis in the experimental set-
up (Fig. 1). Also small rotation rates can be interpreted as
a symmetry breaking fromO(3) to SO(2)⊕Zc

2 (P. Chossat,
personal communication2).

However, there is a difference between GEOFLOW and
the astrophysical framework: the variation of the simulated
force field (1/r5) is different from the encountered force
field variations:r dependence for high-density domain (e.g.
Earth’s mantle) and 1/r2 dependence for low-density fluid
surrounding a high density (e.g. Earth’s outer core). Of
course, this difference does not break the symmetry of the
system, but the so-called “self-adjoint” degeneracy – respon-
sible for the existence of reversal motions – no longer occurs
(Chossat and Guyard, 1996). Indeed, this degeneracy comes
from the anti-symmetry between the competing forces, i.e.

2Chossat, P.: Intermittency at onset of convection in a slowly
rotating self-rotating spherical shell, private communication, 1999.
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Fig. 3. Time dependent flow: spectral coefficients for the temperature (top left), kinetic energy (top right) and power spector for the
spectral coefficient for the temperature (bottom left) and the kinetic energy (bottom right)Pr=42.81, η=0.5, Rag=4.0×106 (1T =4K),
Rac=1.6×105.
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Fig. 4. Time dependent flow: Stream function forPr=42.81,η=0.5, Rag=4.0×106 (1T =4K), Rac=1.6×105. The interval between two
consecutive contours is 5.

the gravity force and the buoyancy gradient, both of which
have 1/r2 variations in that case. For that reason, we chose
to compare the dynamics under dielectrophoretic force field
with the dynamics under 1/r2 field which is known to lead to
the heteroclinic cycles. We aim at answering the questions:

– can the dielectrophoretic force field reproduce such
complex dynamics?

– How do the dynamics differ between both cases?

Because of experimental requirements, we have restricted the
study to aspect ratiosη>0.3 but have covered a large range
of Prandtl number.

4 Bifurcation analysis method

The mathematical modeling of the problem is the same as the
system of Eqs. (1–2–3) by removing theRag contribution in

www.nonlin-processes-geophys.net/13/413/2006/ Nonlin. Processes Geophys., 13, 413–423, 2006
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Fig. 5. Dependence of frequency on1T for V =7.9 kV (left) and on1V for Rag=4.0×106 (1T =4K) (right) in both casesPr=42.81,
η=0.5.

Eq. (1). To simulate the 1/r2 gravity field, the 1/r5 term
associated withRag in Eq. (1) has to be replaced by 1/r2.

Beltrame et al.(2003a) have undertaken the linear stability
analysis of the pure diffuse state (without convection) com-
puting the critical Rayleigh number Rac of the onset of con-
vection for a fixed aspect ratio. The bifurcated dynamics
are explored using the center manifold reduction (Vander-
bauwhede and Iooss, 1992) in the parameter space ofRa and
η. This center manifold is spanned by the` spherical eigen-
modes, and leads to a finite dimensional system of ODEs.
The problem is intrinsically nonlinear and the ODE system
can be computed using the first terms of a Taylor series ex-
pansion (Beltrame et al., 2003a), which results in so-called
amplitude equations. We do not write these equations be-
cause they are already obtained in literature and the precise
references are given in the following for each case. However,
in order to better understand the role of degeneracy, we recall
the general form of these amplitude equations for the more
complicated case of this study corresponding to interaction
between the odd and even modes,`o and`e , respectively:

ẋo = coxo + coePoe(xo, xe) + h.o.t. (6)

ẋe = cexe + cooPoo(xo, xo) + ceePee(xe, xe) + h.o.t. (7)

The odd and even amplitudes,xo and xe, are 2̀ o+1- and
2`e+1-dimensional vectors, respectively. The polynomials
P.. areO(3)-equivariant and are determined using an alge-
braic algorithm, but thec.. coefficients in front of the poly-
nomials are numerically computed and they depend, in par-
ticular, on the Prandtl number. First let us remark that some
possible quadratic polynomials of the variablesxo, xe van-
ish in the equations. These well-known degeneracies are a
consequence of theO(3) symmetry (Chossat et al., 1990).

The self-adjoint degeneracy is a supplementary degener-
acy which leads tocee=0 in Eq. (7). This degeneracy comes
from the physical anti-symmetry of the two competing force

fields, namely±1/r2. The physical anti-symmetry “forces”
an anti-symmetry of the pure even modes in the amplitude
Eq. (7) since, if the couple(xo=0, xe) is a solution then
(xo=0, −xe) is a solution too. Recently, it was shown, that
this anti-symmetry can be interpreted as a time-reversal sym-
metry: a transformation of spatial variables and a simul-
taneous inversion of timet→−t (Buono et al., 2006). In
the same way as the geometrical symmetries, this physical
anti-symmetry leads to a degeneracy in the amplitude equa-
tions. In the GEOFLOW framework, we will observe an-
other degeneracy which also leads to anti-symmetry. Even
if the following bifurcation analysis will point out the influ-
ence of this anti-symmetry, the group-theoretical aspect of
this “time-reversal” symmetry is beyond the scope of this pa-
per.

The Taylor series expansion is undertaken at the third or-
der, or if necessary, at the fourth order. Solving the re-
sulting amplitude equations, 3-D time-dependent dynamics
can be obtained near the bifurcation point(Rac, η). Further-
more, the analysis is supplemented by the knowledge of the
isotropy lattice which gives the different invariant sub-spaces
of the phase space and classifies all the possible steady-
state by their symmetry (isotropy subgroup.) This method
takes place in the equivariant bifurcation theory (Chossat and
Lauterbach, 2000).

Near the onset, only onèspherical mode is generically
unstable. We recall briefly the known results for this codi-
mension 1 case in Sect.5. More interesting is the case where
two consecutive modes(`, `+1) interact, which is obtained
for some critical aspect ratiosηc. This codimension 2 bifur-
cation is explored in the(Ra, η) parameters plane in Sect.6.

Nonlin. Processes Geophys., 13, 413–423, 2006 www.nonlin-processes-geophys.net/13/413/2006/
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5 Codimension 1 bifurcation

In this section, the generic codimension 1 bifurcations for the
two central force fields, the 1/r2 gravity field and the 1/r5

dielectrophoretic field are discussed in turn.

5.1 1/r2 Gravity field

If we consider the central self-gravitation field (1/r2) only,
the non-dimensional buoyancy force of the basic state (with-
out convection) is exactly the opposite of the gravitating
force: it is the “self-adjoint” degeneracy.Chossat(1979)
gives the consequences on the coefficients of the amplitude
equations: the third-order coefficients are negative and the
even-order coefficient of the even mode vanish (cee=0 of
Eq. 7). Then we deduce that the bifurcated branches with
maximal isotropy subgroup are supercritical pitchforks.

For the odd mode, the action of the central symmetry alone
forces the pitchfork bifurcation. Then, the opposite solutions
are in the sameO(3)-orbit, i.e. they are physically identi-
cal solutions applying aO(3) transformation. This is not
the case for the even modes, where the two branches of the
pitchfork bifurcation correspond to two different physical so-
lutions.

The Fig. 6 presents theα, β and γ branches, respec-
tively corresponding to the steady states of axial mode-2
(O(2)⊕Zc

2), tetrahedral mode-3 (O−), and cubic mode-4
(O⊕Zc

2). It is clear that the opposite solution ofβ is ob-
tained by a rotation ofπ/2 around the vertical axis.

5.2 Dielectrophoretic field

Let us consider the central dielectrophoretic field (1/r5) in
a microgravity environment. The “self-adjoint” degeneracy
no longer occurs and there is no analytical result. According
to the computation of the amplitude equations coefficients
(Beltrame et al., 2003a; Beltrame and Egbers, 2004), the bi-
furcations are supercritical. However, the even branches are
slightly different from the self-adjoint case, since the even-
order terms are not negligible. Then, the bifurcation is a per-
turbed pitchfork one: two asymmetric branches with a hys-
teresis effect. The details of the bifurcated branches and their
stability are presented inTravnikov et al.(2004). The stable
steady-states for different aspect ratiosη=0.3, 0.4 and 0.5
are presented in Fig.6.

As already pointed out inTravnikov et al.(2004), the re-
sults are similar to the gravity force: the selected branches
near the onset are qualitatively equivalent to the gravity force
field case. However, for codimension 2 dynamics, the bifur-
cation is more complex and the influence of the bifurcation
type is more important, because heteroclinic cycles appear
due to this anti-symmetry of the even pitchfork bifurcation.

α β γ

Fig. 6. Radial velocity distribution (dark is the down-welling mo-
tion) of the (left to right)α, β andγ respectively, stable bifurcated
branches forη=0.3, 0.4 and 0.5 respectively.

6 Codimension 2 bifurcation

The codimension 2 bifurcation occurs for some critical cou-
ple (Rac, ηc) where two consecutive modes(`, `+1) inter-
act. In the GEOFLOW framework we found that the (2,3)
and the (3,4) mode interaction can be reached for a critical
aspect ratioηc=0.33 andηc=0.45, respectively (Beltrame
et al., 2003a; Beltrame and Egbers, 2004). It is well known
that rich dynamics appear in the neighborhood of the bifurca-
tion with complex spatiotemporal structure. One noteworthy
type of dynamics are structurally stable heteroclinic cycles
(Guckenheimer and Holmes, 1988). Indeed, on one hand,
such complex phenomena raise interesting theoretical ques-
tions since they are “forced” by theO(3) symmetry group,
but also, on the other hand, they occur in different domains of
physics. For example, they are reminiscent of the aperiodic
Earth’s magnetic field. In-depth analysis was undertaken to
point out the role of theO(3) group (Chossat and Guyard,
1996), but very little attention has been given to date to the
role of the self-adjoint degeneracy. In the following we focus
on the (2,3) and (3,4) interactions and explain the underlying
dynamics in more detail.

6.1 Interaction of (2,3) modes

6.1.1 Self-adjoint degeneracy

In this section, we assume that the “self-adjoint” degener-
acy occurs in the amplitude equations. Although, it is not
the generic case in the GEOFLOW framework, we have
shown that for a critical Prandtl number valuePrc'0.2365,
the same conditions for self-adjoint degeneracy are satisfied
(Beltrame et al., 2003a). Considering that the criticalηc and
Prc numbers are close to the aspect ratio and Prandtl num-
ber of the Earth’s outer core, our study is relevant within a
geophysical framework.

The numerical results corroborate the theoretical analysis
for a self-gravitating case developed inChossat and Guyard
(1996). The cycles connect opposite axisymmetric solutions
α± of the mode 2, where two different cases occur.

The first, and more simple, case is when the steady-states
are on the same axis (Beltrame et al., 2003b). This is the so-
called type I heteroclinic cycle. The connections are in the
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Fig. 7. Additional connection in the Type-I heteroclinic cycle for
Ra=1656,η=0.3310 andPr=0.2365.
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Fig. 8. Trajectories in the energy of the mode 2 and 3 plane for a
periodic motion:Ra=1654.5, η=0.3308 andPr=0.2365.

invariant planesP1=Fix
(
O(2)−

)
and P2=Fix

(
Dd

6

)
, which

correspond to the axial symmetry (O(2)−) and to the equi-
lateral triangle symmetry added to the equatorial symmetry
(Dd

6 ), respectively. The heteroclinic cycle is stable and at-
tractive, i.e. the dynamics tend to the limit heteroclinic cycle.
This last property implies that the dynamics take place near
the fixed-point and, due to limitations of numerical accuracy,
the trajectory can “jump” to a connection of another cycle.
For example, in Fig.7 the trajectory crosses theP2 invari-
ant plane (theoretically impossible) and we observe an addi-
tional connection in the planeP1. This phenomenon is not
only possible in a numerical situation but can also arise in
the experiment, since small imperfections can produce such
a jump. There is another unstable manifold of both steady
states,α±, which leads to oscillations in a 4-dimensional in-

t0 t0+
1
2T

t0+T t0+
3
2T t0+2T

Fig. 9. Radial velocity distribution oscillations during the 2T period
for: Ra=1654.5, η=0.3308 andPr=0.2365.

variant space associated with theDz
2 symmetry (reflections

of two planes). IfT designates the period of the energy tra-
jectory loop (Fig.8), the period of the motion is 2T (two
loops). Indeed, the motion at the instantt+T is deduced
from the one at the instantt by a geometrical transformation:
equatorial reflection followed by aπ2 rotation of axes(Oz)

(Fig. 9).

The second case are cycles called type II heteroclinic cy-
cles, and they involve four axisymmetric solutions with two
orthogonal axes (Beltrame and Egbers, 2005). The trajecto-
ries, that connect solutions with two different axes, arise in
the Fix

(
D2⊕Zc

2

)
invariant plane of mode 2, notedP3. The

other trajectories (involving the same axis) are inP2 or P3.
When the region of existence of the cycle II coexists with a
type I, then the cycle II is broken and the dynamics tends to a
type I cycle. Indeed, the expanding and contracting eigenval-
ues of the connections inP3 are very small and of the same
order as the vanishing quadratic coefficient (Chossat and Gu-
yard, 1996). Thus, the type I cycle is preferred during numer-
ical simulations. Then, takingPr<Prc and |Pr−Prc|�1,
a cycle II is observed in a very narrow domain of existence
in the parameter plane distinct from the cycle I domain. That
is most certainly a reason whyChossat and Guyard(1996)
were not able to observe it.

Increasing the difference|Pr−Prc|, the competition be-
tween type-I and II cycles can lead to a complex quasi-
periodic motion (Fig.10). As in the heteroclinic cycles,
plateaus close to equilibria appear but they are shorter, and
it is difficult to distinguish transitions and equilibria. All
steady states involve both modes but we found states, which
look like mode 2 axisymmetricα± states: see panels (a), (e)
and (f) of Fig.11. The transition (e) to (f) is similar to the
one inP2, and the transition (d) to (e) is a part of the tra-
jectory in theP1 plane. The transition from the state (a) to
(d) is due to the expanding value inP3, but it does not stay
in this plane. It occurs in the 7-dimensional invariant space
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Fig. 10. Evolution of the mode 2 (plain) and mode 3 (dotted) mod-
ules during a Generalized Heteroclinic Cycle (GHC) forRa=1654,
η=0.3306 andPr=0.22.

associated with theZ−

2 symmetry, notedV (one reflection of
plane, Fig.11c). It leads to theP1 connection with axial sym-
metry, but the axis of the axisymmetric steady-states(a) and
4(d) differs (Fig. 11). Furthermore, contrary to the type-II
cycle, both axes are not orthogonal. The evolution of the axis
seems to be random. Indeed, these dynamics are due to the
existence of Generalized Heteroclinic Cycles (GHC) found
for the (1,2) interaction byChossat et al.(1999). Because of
the O(3)-symmetry, there exist multi-dimensional trajecto-
ries deduced from those of “simple” heteroclinic cycles and
connecting the group orbit of the steady-states. Using the
same remarks ofChossat et al.(1999), the existence of the
invariant sphere can be proved in our present case (Field,
1986). The simulation shows that actually the trajectories
occur on an invariant sphere inV , which is 6-dimensional.

6.1.2 Generic case

For the silicone oil in the GEOFLOW-experiment, the
Prandtl number (see Table1) is far from the critical value
Prc'0.2365. As expected, the coefficient for the quadratic
polynomial is not negligible. The coefficients of the ampli-
tude equations do not vary much between the different fluids
and, as a result, the bifurcated dynamics do not present im-
portant differences. Both axisymmetric solutionsα± with
different sense of convection still exist but there is a factor
10 between their amplitudes. The greater amplitude solution,
hereα−, is stable versus the mode 2. Furthermore the con-
nection inP3 from α+ to a copy ofα− still exists. However,
the back connection inP3 is broken and the trajectory tends
to a mixed-modes equilibrium. Thus, there is no longer a het-
eroclinic cycle. The selected bifurcated branch depends on
theα− stability versus the isotypic components of the mode
3. Eitherα− is stable orβ of the mode 3 is stable. This com-

(a) (b) (c)

(d) (e) (f)

Fig. 11. Radial velocity distribution for the different states of the
Fig. 10during the GHC.

petition does not lead to time-dependent dynamics and we
observe only steady-states.

6.2 Interaction of the (3,4) modes

For the (3,4) interaction, the situation is quite different be-
cause we have proved that the heteroclinic cycle does not ex-
ist for the self-adjoint case (Beltrame, 2006b). This is a con-
sequence of theO(3) symmetry. More precisely, invariant
planes break the possible connections between steady states.

However, we have shown that another degeneracy can oc-
cur for the experimental fluid (Beltrame and Egbers, 2004):
coo=0 in the even amplitude Eq. (7). The consequence is
the existence of pure mode 3 branches which are generically
mixed with the mode 4 (Beltrame, 2006b). In this way, the
degeneracy induces degenerated isotropy subgroups. In these
subgroups the dynamics have an anti-symmetry property: the
solution is exactly the opposite by a geometrical transforma-
tion. The simulation of the amplitude equations developed
up to third order shows complex and stable heteroclinic cy-
cles (Beltrame, 2006a1). We can distinguish a heteroclinic
cycle and homoclinic cycle. The first one involves the cu-
bic solution of the mode 4 (γ ) and the tetrahedral solution
of the mode-3 (β) and the second one connects the solu-
tions of the orbit ofβ. According to the simulation these
cycles alternate indefinitely but not periodically (Beltrame,
2006a1). Nevertherless, the direct simulation with the nu-
merical code used in the first part only lets the homoclinic
cycle appear. The dynamics after some cycles tend to the
γ solution which seems to be stable (Fig.12). Indeed, the
amplitude ofγ , due to the hysteresis, is not very small at
the onset of bifurcation ('0.3). Then, the fourth order terms
can have a non-negligible influence on the bifurcation dia-
gram. The computation at the fourth order in the amplitude
equations shows that theγ solution is actually stable in the
supercritical region. Hence the heteroclinic cycle previously
mentioned cannot occur.
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Fig. 12. Evolution of the mode 3 (plain) and mode 4 (dotted)
amplitudes during a homoclinic cycle forRa=2205,η=0.45 and
Pr=107.22.

However, this homoclinic cycle remains interesting be-
cause the symmetry is completely broken during the tran-
sition (Fig.13c ). The time spent near theβ equilibrium is
short and the dynamics seem to slide onto theβ-orbit show-
ing a slight rotation (Figs.13a and b). The axis of the differ-
ent β equilibria connected in the cycle seem to be random.
Nevertheless, this behavior is different to the GHC of the
(2,3) interaction because it does not derive from a simple cy-
cle. Furthermore, an invariant sphere does not exist, which is
an important key of the GHC.

The amplitude of the mode 4 for the last equilibrium be-
fore the final transition toγ is smaller than for the other equi-
libria of the cycle (Fig.12). Indeed, there exist two equilib-
ria, β andβ ′, very near to each other, which are almost pure
mode 3 with theO− tetrahedral symmetry. Taking the small
amplitude of the mode 4 into account, the analytical resolu-
tion of the amplitude equations show thatβ is actually in the
mixed-modes Fix(O−) plane andβ ′ is in the 3-dimensional
space Fix(Dd

4). This last invariant space contains Fix(O−),
henceβ ′ has less symmetry thanβ. According to the nu-
merical results, the homoclinic cycle involves theβ ′ orbit,
while the heteroclinic cycle in Beltrame (2006a)1 involvesβ.
When theβ equilibrium is present in the homoclinic cycle,
then the same transition as in Beltrame (2006a)1 leads to the
stableγ equilibria and ends the cycle. Although the homo-
clinic connections disappear after some cycles, the duration
of this transition is large enough to be observable during the
experiment. Furthermore, they persist far away from the on-
set of convection, contrary to the other studied cycles.

(a) (b) (c)

(d) (e) (f)

Fig. 13. Radial velocity distribution for the different states of the
Fig. 12during a homoclinic cycle.

7 Conclusions

The specific features of the central force field due to the di-
electrophoretic effect is studied using a pseudospectral nu-
merical code and a bifurcation analysis near the onset of con-
vection. In terrestrial conditions as well as in a microgravity
environment, the codimension 1 bifurcation which presents
only steady-states or rotating waves, is only slightly modified
from the case with another force field. On the contrary, the
complex time-dependent dynamics show a significant differ-
ence. For the terrestrial conditions with a dielectrophoretic
field, oscillations appear for relative small Rayleigh numbers
compared to the case without dielectrophoretic force. In the
microgravity environment within the dielectrophoretic field,
the dynamics depend strongly on the Prandtl number in con-
trast to the self-gravitating force field. For a critical Prandtl
number (Prc'0.24), the simulation of the GEOFLOW ex-
periment presented a rich variety of heteroclinic cycles of
the (2,3) mode interactions, which can also occur in the as-
trophysical framework. Unfortunately, for the experiment
such low Prandtl number values cannot be reached. However,
we have observed a complex homoclinic cycle, which satis-
fies the requirements on the Prandtl number. These dynam-
ics do not arise within the astrophysical framework. Thus
the dielectrophoretic force leads to a rich variety of time-
dependent dynamics, which are not always present for grav-
ity forces. Finally, these simulations point out the limit of the
geometrical symmetries as bifurcation mechanisms, since the
presence of the dielectrophoretic force field does not break
the symmetry of the other case. The anti-symmetry plays
a relevant role for the existence of the heteroclinic cycles.
It would be interesting to take into account this invariant to
better understand the mechanism of such dynamics.

Beyond these theoretical aspects, there are many outlooks
of geophysical interest. Firstly, the study ofr-dependent
gravity fields is relevant for the Earth’s mantle. Recently,
Früh (2005) has compared different central force fields of
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the form g=Crn wheren=5 to n=−5 for an axisymmet-
ric case. Fr̈uh has shown that the convection rolls are qual-
itatively similar for all the values ofn according to our re-
sult of the Sect.5. But as we have undertaken for the 1/r2

and 1/r5-dependent force fields, it would be interesting to
look at possible 3-D-time-dependent dynamics under anr-
dependent force field.

Secondly, although the non-rotating case leads to very rich
kind of dynamics, the rotating case is, of course, relevant
future work which has to be exploited for the GEOFLOW-
experiment as underlined by the results inGellert et al.
(2005).

Edited by: W.-G. Fr̈uh
Reviewed by: three referees
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