10 research outputs found

    Efthymia Chantzi's Quick Files

    No full text
    The Quick Files feature was discontinued and it’s files were migrated into this Project on March 11, 2022. The file URL’s will still resolve properly, and the Quick Files logs are available in the Project’s Recent Activity

    Algorithmic discovery, development and personalized selection of higher-order drug cocktails : A label-free live-cell imaging & secretomics approach

    No full text
    An upward trend in clinical pharmacology is the use of multiple drugs to combat complex and co-occurring diseases due to better efficacy, decreased toxicity and reduced risk of evolving resistance. Despite high late-stage attrition rates and the need for multi drug treatments, most drug discovery and development efforts are still mainly focused on new one-size-fits-all monotherapies. This is unfortunate given the complex, heterogeneous and often only partially understood pathophysiology of many diseases. In this context, polypharmacotherapies hold strong potential, especially when patient tailored. However, as of today, the personalized combination therapy area remains vastly unexplored. A major reason is lack of standardized and robust tools that allow systematic in vitro drug combination sensitivity testing of different disease models and patient derived cells. This thesis fills in this lack by introducing two methodological frameworks, namely COMBImageDL and COMBSecretomics, designed to enable systematic second- and higher-order drug combination studies within and beyond cancer pharmacology. They include advanced quality control procedures, non-parametric resampling statistics to quantify uncertainty and a data driven methodology to evaluate response patterns and discern higher- from lower- and single-drug effects. Both are based on a standardized and reproducible format that could be employed with any experimental platform that provides the required raw data. COMBImageDL searches exhaustively for drug cocktails that induce changes in cell viability and time evolving cell culture morphology by employing conventional endpoint synergy analyses jointly with quantitative label-free live-cell imaging. Deep neural network learning, MapReduce parallel processing and method-specific parameter tuning are key components of the design. The purely phenotypic functionality of COMBImageDL is extended by COMBSecretomics, which searches exhaustively for drug cocktails that can modify, or even reverse malfunctioning secretomic patterns. It processes complex datasets involving drug treated cells observed before and after being stimulated by relevant proteins. Finally, the highest single agent method is generalized for higher-order drug combination analysis and adjusted for secreted protein profiles. The frameworks were used in five pharmacological studies being industrial, academic and clinical collaborations in areas where novel and personalized multi drug regimens are highly needed; oncology (acute myeloid leukemia and glioblastoma multiforme) and osteoarthritis. These studies demonstrate intriguing drug combination findings and in general the great potential of tools like COMBImageDL and COMBSecretomics to accelerate the discovery and development of novel potent polypharmacotherapeutic candidates

    Algorithmic discovery, development and personalized selection of higher-order drug cocktails : A label-free live-cell imaging & secretomics approach

    No full text
    An upward trend in clinical pharmacology is the use of multiple drugs to combat complex and co-occurring diseases due to better efficacy, decreased toxicity and reduced risk of evolving resistance. Despite high late-stage attrition rates and the need for multi drug treatments, most drug discovery and development efforts are still mainly focused on new one-size-fits-all monotherapies. This is unfortunate given the complex, heterogeneous and often only partially understood pathophysiology of many diseases. In this context, polypharmacotherapies hold strong potential, especially when patient tailored. However, as of today, the personalized combination therapy area remains vastly unexplored. A major reason is lack of standardized and robust tools that allow systematic in vitro drug combination sensitivity testing of different disease models and patient derived cells. This thesis fills in this lack by introducing two methodological frameworks, namely COMBImageDL and COMBSecretomics, designed to enable systematic second- and higher-order drug combination studies within and beyond cancer pharmacology. They include advanced quality control procedures, non-parametric resampling statistics to quantify uncertainty and a data driven methodology to evaluate response patterns and discern higher- from lower- and single-drug effects. Both are based on a standardized and reproducible format that could be employed with any experimental platform that provides the required raw data. COMBImageDL searches exhaustively for drug cocktails that induce changes in cell viability and time evolving cell culture morphology by employing conventional endpoint synergy analyses jointly with quantitative label-free live-cell imaging. Deep neural network learning, MapReduce parallel processing and method-specific parameter tuning are key components of the design. The purely phenotypic functionality of COMBImageDL is extended by COMBSecretomics, which searches exhaustively for drug cocktails that can modify, or even reverse malfunctioning secretomic patterns. It processes complex datasets involving drug treated cells observed before and after being stimulated by relevant proteins. Finally, the highest single agent method is generalized for higher-order drug combination analysis and adjusted for secreted protein profiles. The frameworks were used in five pharmacological studies being industrial, academic and clinical collaborations in areas where novel and personalized multi drug regimens are highly needed; oncology (acute myeloid leukemia and glioblastoma multiforme) and osteoarthritis. These studies demonstrate intriguing drug combination findings and in general the great potential of tools like COMBImageDL and COMBSecretomics to accelerate the discovery and development of novel potent polypharmacotherapeutic candidates

    COMBImage2 : a parallel computational framework for higher-order drug combination analysis that includes automated plate design, matched filter based object counting and temporal data mining

    No full text
    Background: Pharmacological treatment of complex diseases using more than two drugs is commonplace in the clinic due to better efficacy, decreased toxicity and reduced risk for developing resistance. However, many of these higher-order treatments have not undergone any detailed preceding in vitro evaluation that could support their therapeutic potential and reveal disease related insights. Despite the increased medical need for discovery and development of higher-order drug combinations, very few reports from systematic large-scale studies along this direction exist. A major reason is lack of computational tools that enable automated design and analysis of exhaustive drug combination experiments, where all possible subsets among a panel of pre-selected drugs have to be evaluated. Results: Motivated by this, we developed COMBImage2, a parallel computational framework for higher-order drug combination analysis. COMBImage2 goes far beyond its predecessor COMBImage in many different ways. In particular, it offers automated 384-well plate design, as well as quality control that involves resampling statistics and inter-plate analyses. Moreover, it is equipped with a generic matched filter based object counting method that is currently designed for apoptotic-like cells. Furthermore, apart from higher-order synergy analyses, COMBImage2 introduces a novel data mining approach for identifying interesting temporal response patterns and disentangling higher- from lower- and single-drug effects.COMBImage2 was employed in the context of a small pilot study focused on the CUSP9v4 protocol, which is currently used in the clinic for treatment of recurrent glioblastoma. For the first time, all 246 possible combinations of order 4 or lower of the 9 single drugs consisting the CUSP9v4 cocktail, were evaluated on an in vitro clonal culture of glioma initiating cells. Conclusions: COMBImage2 is able to automatically design and robustly analyze exhaustive and in general higher-order drug combination experiments. Such a versatile video microscopy oriented framework is likely to enable, guide and accelerate systematic large-scale drug combination studies not only for cancer but also other diseases

    Spectral cube construction from hyper spectral scanning imaging

    No full text
    Μη διαθέσιμη περίληψηNot available summarizatio

    COMBImage : a modular parallel processing framework for pairwise drug combination analysis that quantifies temporal changes in label-free video microscopy movies

    No full text
    Background: Large-scale pairwise drug combination analysis has lately gained momentum in drug discovery and development projects, mainly due to the employment of advanced experimental-computational pipelines. This is fortunate as drug combinations are often required for successful treatment of complex diseases. Furthermore, most new drugs cannot totally replace the current standard-of-care medication, but rather have to enter clinical use as add-on treatment. However, there is a clear deficiency of computational tools for label-free and temporal image-based drug combination analysis that go beyond the conventional but relatively uninformative end point measurements. Results: COMBImage is a fast, modular and instrument independent computational framework for in vitro pairwise drug combination analysis that quantifies temporal changes in label-free video microscopy movies. Jointly with automated analyses of temporal changes in cell morphology and confluence, it performs and displays conventional cell viability and synergy end point analyses. The image processing algorithms are parallelized using Google's MapReduce programming model and optimized with respect to method-specific tuning parameters. COMBImage is shown to process time-lapse microscopy movies from 384-well plates within minutes on a single quad core personal computer.This framework was employed in the context of an ongoing drug discovery and development project focused on glioblastoma multiforme; the most deadly form of brain cancer. Interesting add-on effects of two investigational cytotoxic compounds when combined with vorinostat were revealed on recently established clonal cultures of glioma-initiating cells from patient tumor samples. Therapeutic synergies, when normal astrocytes were used as a toxicity cell model, reinforced the pharmacological interest regarding their potential clinical use. Conclusions: COMBImage enables, for the first time, fast and optimized pairwise drug combination analyses of temporal changes in label-free video microscopy movies. Providing this jointly with conventional cell viability based end point analyses, it could help accelerating and guiding any drug discovery and development project, without use of cell labeling and the need to employ a particular live cell imaging instrument

    An ex vivo tissue model of cartilage degradation suggests that cartilage state can be determined from secreted key protein patterns

    No full text
    The pathophysiology of osteoarthritis (OA) involves dysregulation of anabolic and catabolic processes associated with a broad panel of proteins that ultimately lead to cartilage degradation. An increased understanding about these protein interactions with systematic in vitro analyses may give new ideas regarding candidates for treatment of OA related cartilage degradation. Therefore, an ex vivo tissue model of cartilage degradation was established by culturing tissue explants with bacterial collagenase II. Responses of healthy and degrading cartilage were analyzed through protein abundance in tissue supernatant with a 26-multiplex protein profiling assay, after exposing the samples to a panel of 55 protein stimulations present in synovial joints of OA patients. Multivariate data analysis including exhaustive pairwise variable subset selection identified the most outstanding changes in measured protein secretions. MMP9 response to stimulation was outstandingly low in degrading cartilage and there were several protein pairs like IFNG and MMP9 that can be used for successful discrimination between degrading and healthy samples. The discovered changes in protein responses seem promising for accurate detection of degrading cartilage. The ex vivo model seems interesting for drug discovery projects related to cartilage degradation, for example when trying to uncover the unknown interactions between secreted proteins in healthy and degrading tissues

    COMBSecretomics : a pragmatic methodological framework for higher-order drug combination analysis using secretomics

    No full text
    Multi drug treatments are increasingly used in the clinic to combat complex and co-occurring diseases. However, most drug combination discovery efforts today are mainly focused on anticancer therapy and rarely examine the potential of using more than two drugs simultaneously. Moreover, there is currently no reported methodology for performing second- and higher-order drug combination analysis of secretomic patterns, meaning protein concentration profiles released by the cells. Here, we introduce COMBSecretomics (https://github.com/EffieChantzi/COMBSecretomics.git), the first pragmatic methodological framework designed to search exhaustively for second- and higher-order mixtures of candidate treatments that can modify, or even reverse malfunctioning secretomic patterns of human cells. This framework comes with two novel model-free combination analysis methods; a tailor-made generalization of the highest single agent principle and a data mining approach based on top-down hierarchical clustering. Quality control procedures to eliminate outliers and non-parametric statistics to quantify uncertainty in the results obtained are also included. COMBSecretomics is based on a standardized reproducible format and could be employed with any experimental platform that provides the required protein release data. Its practical use and functionality are demonstrated by means of a proof-of-principle pharmacological study related to cartilage degradation. COMBSecretomics is the first methodological framework reported to enable secretome-related second- and higher-order drug combination analysis. It could be used in drug discovery and development projects, clinical practice, as well as basic biological understanding of the largely unexplored changes in cell-cell communication that occurs due to disease and/or associated pharmacological treatment conditions

    Towards repositioning of quinacrine for treatment of acute myeloid leukemia - Promising synergies and in vivo effects.

    No full text
    We previously reported that the anti-malarial drug quinacrine has potential to be repositioned for treatment of acute myeloid leukemia (AML). As a next step towards clinical use, we assessed the efficacy of quinacrine in an AML-PS mouse model and investigated possible synergistic effects when combining quinacrine with nine other antileukemic compounds in two AML cell lines. Furthermore, we explored the in vivo activity of quinacrine in combination with the widely used AML agent cytarabine. The in vivo use of quinacrine (100mg/kg three times per week for two consecutive weeks) significantly suppressed circulating blast cells at days 30/31 and increased the median survival time (MST). The in vitro drug combination analysis yielded promising synergistic interactions when combining quinacrine with cytarabine, azacitidine and geldanamycin. Finally, combining quinacrine with cytarabine in vivo showed a significant decrease in circulating leukemic blast cells and increased MST compared to the effect of either drug used alone, thus supporting the findings from the in vitro combination experiments. Taken together, the repositioning potential of quinacrine for treatment of AML is reinforced by demonstrating significant in vivo activity and promising synergies when quinacrine is combined with different agents, including cytarabine, the hypomethylating agent azacitidine and HSP-90 inhibitor geldanamycin
    corecore