31 research outputs found

    Coating Carbon Fibers With Platinum

    Get PDF
    A process for coating carbon fibers with platinum has been developed. The process may also be adaptable to coating carbon fibers with other noble and refractory metals, including rhenium and iridium. The coated carbon fibers would be used as ingredients of matrix/fiber composite materials that would resist oxidation at high temperatures. The metal coats would contribute to oxidation resistance by keeping atmospheric oxygen away from fibers when cracks form in the matrices. Other processes that have been used to coat carbon fibers with metals have significant disadvantages: Metal-vapor deposition processes yield coats that are nonuniform along both the lengths and the circumferences of the fibers. The electrical resistivities of carbon fibers are too high to be compatible with electrolytic processes. Metal/organic vapor deposition entails the use of expensive starting materials, it may be necessary to use a furnace, and the starting materials and/or materials generated in the process may be hazardous. The present process does not have these disadvantages. It yields uniform, nonporous coats and is relatively inexpensive. The process can be summarized as one of pretreatment followed by electroless deposition. The process consists of the following steps: The surfaces of the fiber are activated by deposition of palladium crystallites from a solution. The surface-activated fibers are immersed in a solution that contains platinum. A reducing agent is used to supply electrons to effect a chemical reduction in situ. The chemical reduction displaces the platinum from the solution. The displaced platinum becomes deposited on the fibers. Each platinum atom that has been deposited acts as a catalytic site for the deposition of another platinum atom. Hence, the deposition process can also be characterized as autocatalytic. The thickness of the deposited metal can be tailored via the duration of immersion and the chemical activity of the solution

    Gastrointestinal diseases and their impact on drug solubility: Ulcerative Colitis

    Get PDF
    For poorly soluble compounds, drug product performance in patients with Ulcerative Colitis (UC) compared to healthy subjects can be affected due to differences in drug solubility in GI fluids. A risk assessment tool was developed to identify compounds with a high risk of altered solubility in the GI fluids of UC patients. Pathophysiological changes impacting on the composition of GI fluids in UC patients were considered and UC biorelevant media representative of the stomach, intestine and colon were developed based on biorelevant media based on healthy subjects and literature data using a Design of Experiment approach. The UC media were characterised and revealed differences in surface tension, osmolality and buffer capacity compared to media based on healthy subjects. The solubility of six drugs was investigated in UC biorelevant media and results were related to media- and drug-dependent factors. A lower drug solubility in UC intestinal media was observed for compounds with a high lipophilicity. In UC simulated colonic fluids, drug solubility was altered for ionisable compounds. Additionally, a higher solubility of neutral lipophilic drugs was observed in UC fasted state colonic media with increased concentrations of soluble proteins. The developed UC biorelevant media offer the possibility to identify the risk of altered drug solubilisation in UC patients without conducting expensive clinical trials. A high risk was related to drug ionization properties and lipophilicity in the current study with all investigated drugs showing differences in solubility in biorelevant media based on UC patients compared to healthy subjects

    Gastrointestinal diseases and their impact on drug solubility: Celiac disease

    Get PDF
    The aim of this study was to develop an in vitro tool for predicting drug solubility and dissolution in intestinal fluids of patients with Celiac disease (CED). Biorelevant media for patients with CED were developed based on published information and a Design of Experiment (DoE) approach. The CED biorelevant media were characterised according to their surface tension, osmolality, dynamic viscosity and buffer capacity. By performing solubility studies of six drugs with different physicochemical properties in CED media, we aimed to identify drugs at high risk of altered luminal solubility in CED patients. Identified differences in CED patients compared to healthy subjects were related to a higher concentration of bile salts, lecithin and cholesterol and included as factors in the DoE resulting in 8 CED biorelevant media. Differences in media properties were observed for the surface tension between biorelevant media based on CED patients and healthy subjects. In terms of solubility, only a minimal effect of CED on the solubility of the hydrophilic neutral compound azathioprine was observed. For neutral moderately lipophilic compounds (budesonide, celecoxib), a higher surfactant concentration resulted in most cases in a higher drug solubility, while it was specific to each drug whether this was mainly driven by bile salts or lecithin. In comparison, drug solubilisation of ionisable compounds with moderate to high lipophilicity was less impacted by CED differences. The developed biorelevant CED media serve as in vitro tool to identify the main media factors impacting on drug solubility

    Gastrointestinal diseases and their impact on drug solubility: Crohn's disease

    Get PDF
    In order to investigate differences in drug solubilisation and dissolution in luminal fluids of Crohn's disease (CD) patients and healthy subjects, biorelevant media representative of CD patients were developed using information from literature and a Design of Experiment (DoE) approach. The CD media were characterised in terms of surface tension, osmolality, dynamic viscosity and buffer capacity and compared to healthy biorelevant media. To identify which drug characteristics are likely to present a high risk of altered drug solubility in CD, the solubility of six drugs was assessed in CD media and solubility differences were related to drug properties. Identified differences in CD patients compared to healthy subjects were a reduced concentration of bile salts, a higher gastric pH and a higher colonic osmolality. Differences in the properties of CD compared to healthy biorelevant media were mainly observed for surface tension and osmolality. Drug solubility of ionisable compounds was altered in gastric CD media compared to healthy biorelevant media. For drugs with moderate to high lipophilicity, a high risk of altered drug solubilisation in CD is expected, since a significant negative effect of log P and a positive effect of bile salts on drug solubility in colonic and fasted state intestinal CD media was observed. Simulating the conditions in CD patients in vitro offers the possibility to identify relevant differences in drug solubilisation without conducting expensive clinical trials

    Impact of Gastrointestinal Disease States on Oral Drug Absorption – implications for formulation design – a PEARRL review

    Get PDF
    AbstractObjectivesDrug product performance in patients with gastrointestinal (GI) diseases can be altered compared to healthy subjects due to pathophysiological changes. In this review, relevant differences in patients with inflammatory bowel diseases, coeliac disease, irritable bowel syndrome and short bowel syndrome are discussed and possible in vitro and in silico tools to predict drug product performance in this patient population are assessed.Key findingsDrug product performance was altered in patients with GI diseases compared to healthy subjects, as assessed in a limited number of studies for some drugs. Underlying causes can be observed pathophysiological alterations such as the differences in GI transit time, the composition of the GI fluids and GI permeability. Additionally, alterations in the abundance of metabolising enzymes and transporter systems were observed. The effect of the GI diseases on each parameter is not always evident as it may depend on the location and the state of the disease. The impact of the pathophysiological change on drug bioavailability depends on the physicochemical characteristics of the drug, the pharmaceutical formulation and drug metabolism. In vitro and in silico methods to predict drug product performance in patients with GI diseases are currently limited but could be a useful tool to improve drug therapy.SummaryDevelopment of suitable in vitro dissolution and in silico models for patients with GI diseases can improve their drug therapy. The likeliness of the models to provide accurate predictions depends on the knowledge of pathophysiological alterations, and thus, further assessment of physiological differences is essential.</jats:sec

    Investigating the Impact of Crohn's Disease on the Bioaccessibility of a Lipid-Based Formulation with an in Vitro Dynamic Gastrointestinal Model

    Get PDF
    The aim of the study was to investigate the impact of Crohn's disease (CD) on the performance of a lipid-based formulation of ciprofloxacin in a complex gastrointestinal simulator (TIM-1, TNO) and to compare the luminal environment in terms of bile salt and lipid composition in CD and healthy conditions. CD conditions were simulated in the TIM-1 system with a reduced concentration of porcine pancreatin and porcine bile. The bioaccessibility of ciprofloxacin was similar in simulated CD and healthy conditions considering its extent as well as its time course in the jejunum and ileum filtrate. Differences were observed in terms of the luminal concentration of triglycerides, monoglycerides, and fatty acids in the different TIM-1 compartments, indicating a reduction and delay in the lipolysis of formulation excipients in CD. The quantitative analysis of bile salts revealed higher concentrations for healthy conditions (standard TIM-1 fasted-state protocol) in the duodenum and jejunum TIM-1 compartments compared to published data in human intestinal fluids of healthy subjects. The reduced concentrations of bile salts in simulated CD conditions correspond to the levels observed in human intestinal fluids of healthy subjects in the fasted state.A lipidomics approach with ultra performance liquid chromatography (UPLC)/mass spectrometry (MS) has proven to be a time-efficient method to semiquantitatively analyze differences in fatty acid and bile salt levels between healthy and CD conditions. The dynamic luminal environment in CD and healthy conditions after administration of a lipid-based formulation can be simulated using the TIM-1 system. For ciprofloxacin, an altered luminal lipid composition had no impact on its performance indicating a low risk of altered performance in CD patients. </p

    Advanced Energy Retrofit Guide Retail Buildings

    Full text link
    The Advanced Energy Retrofit Guide for Retail Buildings is a component of the Department of Energy’s Advanced Energy Retrofit Guides for Existing Buildings series. The aim of the guides is to facilitate a rapid escalation in the number of energy efficiency projects in existing buildings and to enhance the quality and depth of those projects. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, these guides provide a practical roadmap to effectively planning and implementing performance improvements for existing buildings
    corecore