223 research outputs found

    Classification of unit-vector fields in convex polyhedra with tangent boundary conditions

    Full text link
    A unit-vector field n on a convex three-dimensional polyhedron P is tangent if, on the faces of P, n is tangent to the faces. A homotopy classification of tangent unit-vector fields continuous away from the vertices of P is given. The classification is determined by certain invariants, namely edge orientations (values of n on the edges of P), kink numbers (relative winding numbers of n between edges on the faces of P), and wrapping numbers (relative degrees of n on surfaces separating the vertices of P), which are subject to certain sum rules. Another invariant, the trapped area, is expressed in terms of these. One motivation for this study comes from liquid crystal physics; tangent unit-vector fields describe the orientation of liquid crystals in certain polyhedral cells.Comment: 21 pages, 2 figure

    \bbbc P^2 and \bbbc P^{1} Sigma Models in Supergravity: Bianchi type IX Instantons and Cosmologies

    Full text link
    We find instanton/cosmological solutions with biaxial Bianchi-IX symmetry, involving non-trivial spatial dependence of the \bbbc P^{1}- and \bbbc P^{2}-sigma-models coupled to gravity. Such manifolds arise in N=1, d=4d=4 supergravity with supermatter actions and hence the solutions can be embedded in supergravity. There is a natural way in which the standard coordinates of these manifolds can be mapped into the four-dimensional physical space. Due to its special symmetry, we start with \bbbc P^{2} with its corresponding scalar Ansatz; this further requires the spacetime to be SU(2)×U(1)SU(2) \times U(1)-invariant. The problem then reduces to a set of ordinary differential equations whose analytical properties and solutions are discussed. Among the solutions there is a surprising, special-family of exact solutions which owe their existence to the non-trivial topology of \bbbc P^{2} and are in 1-1 correspondence with matter-free Bianchi-IX metrics. These solutions can also be found by coupling \bbbc P^{1} to gravity. The regularity of these Euclidean solutions is discussed -- the only possibility is bolt-type regularity. The Lorentzian solutions with similar scalar Ansatz are all obtainable from the Euclidean solutions by Wick rotation

    THE UNIQUENESS THEOREM FOR ROTATING BLACK HOLE SOLUTIONS OF SELF-GRAVITATING HARMONIC MAPPINGS

    Get PDF
    We consider rotating black hole configurations of self-gravitating maps from spacetime into arbitrary Riemannian manifolds. We first establish the integrability conditions for the Killing fields generating the stationary and the axisymmetric isometry (circularity theorem). Restricting ourselves to mappings with harmonic action, we subsequently prove that the only stationary and axisymmetric, asymptotically flat black hole solution with regular event horizon is the Kerr metric. Together with the uniqueness result for non-rotating configurations and the strong rigidity theorem, this establishes the uniqueness of the Kerr family amongst all stationary black hole solutions of self-gravitating harmonic mappings.Comment: 18 pages, latex, no figure

    Type II Critical Collapse of a Self-Gravitating Nonlinear σ\sigma-Model

    Full text link
    We report on the existence and phenomenology of type II critical collapse within the one-parameter family of SU(2) σ\sigma-models coupled to gravity. Numerical investigations in spherical symmetry show discretely self-similar (DSS) behavior at the threshold of black hole formation for values of the dimensionless coupling constant \ccbeta ranging from 0.2 to 100; at 0.18 we see small deviations from DSS. While the echoing period Δ\Delta of the critical solution rises sharply towards the lower limit of this range, the characteristic mass scaling has a critical exponent γ\gamma which is almost independent of \ccbeta, asymptoting to 0.1185±0.00050.1185 \pm 0.0005 at large \ccbeta. We also find critical scaling of the scalar curvature for near-critical initial data. Our numerical results are based on an outgoing-null-cone formulation of the Einstein-matter equations, specialized to spherical symmetry. Our numerically computed initial-data critical parameters pp^* show 2nd order convergence with the grid resolution, and after compensating for this variation in pp^*, our individual evolutions are uniformly 2nd order convergent even very close to criticality.Comment: 23 pages, includes 10 postscript figure files, uses REVTeX, epsf, psfrag, and AMS math fonts (amstex + amssymb); to appear in PRD15. Summary of revisions from v2: fix wrong formula in figure 6 caption and y-axis label, also minor wording changes and update publication status of refs 5-

    Perturbing gauge/gravity duals by a Romans mass

    Full text link
    We show how to produce algorithmically gravity solutions in massive IIA (as infinitesimal first order perturbations in the Romans mass parameter) dual to assigned conformal field theories. We illustrate the procedure on a family of Chern--Simons--matter conformal field theories that we recently obtained from the N=6 theory by waiving the condition that the levels sum up to zero.Comment: 30 page

    Calibrated Sub-Bundles in Non-Compact Manifolds of Special Holonomy

    Full text link
    This paper is a continuation of math.DG/0408005. We first construct special Lagrangian submanifolds of the Ricci-flat Stenzel metric (of holonomy SU(n)) on the cotangent bundle of S^n by looking at the conormal bundle of appropriate submanifolds of S^n. We find that the condition for the conormal bundle to be special Lagrangian is the same as that discovered by Harvey-Lawson for submanifolds in R^n in their pioneering paper. We also construct calibrated submanifolds in complete metrics with special holonomy G_2 and Spin(7) discovered by Bryant and Salamon on the total spaces of appropriate bundles over self-dual Einstein four manifolds. The submanifolds are constructed as certain subbundles over immersed surfaces. We show that this construction requires the surface to be minimal in the associative and Cayley cases, and to be (properly oriented) real isotropic in the coassociative case. We also make some remarks about using these constructions as a possible local model for the intersection of compact calibrated submanifolds in a compact manifold with special holonomy.Comment: 20 pages; for Revised Version: Minor cosmetic changes, some paragraphs rewritten for improved clarit

    The classification of static vacuum space-times containing an asymptotically flat spacelike hypersurface with compact interior

    Get PDF
    We prove non-existence of static, vacuum, appropriately regular, asymptotically flat black hole space-times with degenerate (not necessarily connected) components of the event horizon. This finishes the classification of static, vacuum, asymptotically flat domains of outer communication in an appropriate class of space-times, showing that the domains of outer communication of the Schwarzschild black holes exhaust the space of appropriately regular black hole exteriors.Comment: This version includes an addendum with a corrected proof of non-existence of zeros of the Killing vector at degenerate horizons. A problem with yet another Lemma is pointed out; this problem does not arise if one assumes analyticity of the metric. An alternative solution, that does not require analyticity, has been given in arXiv:1004.0513 [gr-qc] under appropriate global condition

    Numerical Investigation of Cosmological Singularities

    Get PDF
    Although cosmological solutions to Einstein's equations are known to be generically singular, little is known about the nature of singularities in typical spacetimes. It is shown here how the operator splitting used in a particular symplectic numerical integration scheme fits naturally into the Einstein equations for a large class of cosmological models and thus allows study of their approach to the singularity. The numerical method also naturally singles out the asymptotically velocity term dominated (AVTD) behavior known to be characteristic of some of these models, conjectured to describe others, and probably characteristic of a subclass of the rest. The method is first applied to the unpolarized Gowdy T3^3 cosmology. Exact pseudo-unpolarized solutions are used as a code test and demonstrate that a 4th order accurate implementation of the numerical method yields acceptable agreement. For generic initial data, support for the conjecture that the singularity is AVTD with geodesic velocity (in the harmonic map target space) < 1 is found. A new phenomenon of the development of small scale spatial structure is also observed. Finally, it is shown that the numerical method straightforwardly generalizes to an arbitrary cosmological spacetime on T3×RT^3 \times R with one spacelike U(1) symmetry.Comment: 37 pp +14 figures (not included, available on request), plain Te
    corecore