29 research outputs found

    Dual Function of Wnt Signaling during Neuronal Differentiation of Mouse Embryonic Stem Cells

    No full text
    Activation of Wnt signaling enhances self-renewal of mouse embryonic and neural stem/progenitor cells. In contrast, undifferentiated ES cells show a very low level of endogenous Wnt signaling, and ectopic activation of Wnt signaling has been shown to block neuronal differentiation. Therefore, it remains unclear whether or not endogenous Wnt/β-catenin signaling is necessary for self-renewal or neuronal differentiation of ES cells. To investigate this, we examined the expression profiles of Wnt signaling components. Expression levels of Wnts known to induce β-catenin were very low in undifferentiated ES cells. Stable ES cell lines which can monitor endogenous activity of Wnt/β-catenin signaling suggest that Wnt signaling was very low in undifferentiated ES cells, whereas it increased during embryonic body formation or neuronal differentiation. Interestingly, application of small molecules which can positively (BIO, GSK3β inhibitor) or negatively (IWR-1-endo, Axin stabilizer) control Wnt/β-catenin signaling suggests that activation of that signaling at different time periods had differential effects on neuronal differentiation of 46C ES cells. Further, ChIP analysis suggested that β-catenin/TCF1 complex directly regulated the expression of Sox1 during neuronal differentiation. Overall, our data suggest that Wnt/β-catenin signaling plays differential roles at different time points of neuronal differentiation

    O-GlcNAcylation: An Emerging Protein Modification Regulating the Hippo Pathway

    No full text
    The balance between cellular proliferation and apoptosis and the regulation of cell differentiation must be established to maintain tissue homeostasis. These cellular responses involve the kinase cascade-mediated Hippo pathway as a crucial regulator. Hence, Hippo pathway dysregulation is implicated in diverse diseases, including cancer. O-GlcNAcylation is a non-canonical glycosylation that affects multiple signaling pathways through its interplay with phosphorylation in the nucleus and cytoplasm. An abnormal increase in the O-GlcNAcylation levels in various cancer cells is a potent factor in Hippo pathway dysregulation. Intriguingly, Hippo pathway dysregulation also disrupts O-GlcNAc homeostasis, leading to a persistent elevation of O-GlcNAcylation levels, which is potentially pathogenic in several diseases. Therefore, O-GlcNAcylation is gaining attention as a protein modification that regulates the Hippo pathway. This review presents a framework on how O-GlcNAcylation regulates the Hippo pathway and forms a self-perpetuating cycle with it. The pathological significance of this self-perpetuating cycle and clinical strategies for targeting O-GlcNAcylation that causes Hippo pathway dysregulation are also discussed

    Wnt/β-Catenin/Tcf Signaling Induces the Transcription of Axin2, a Negative Regulator of the Signaling Pathway

    No full text
    Axin2/Conductin/Axil and its ortholog Axin are negative regulators of the Wnt signaling pathway, which promote the phosphorylation and degradation of β-catenin. While Axin is expressed ubiquitously, Axin2 mRNA was seen in a restricted pattern during mouse embryogenesis and organogenesis. Because many sites of Axin2 expression overlapped with those of several Wnt genes, we tested whether Axin2 was induced by Wnt signaling. Endogenous Axin2 mRNA and protein expression could be rapidly induced by activation of the Wnt pathway, and Axin2 reporter constructs, containing a 5.6-kb DNA fragment including the promoter and first intron, were also induced. This genomic region contains eight Tcf/LEF consensus binding sites, five of which are located within longer, highly conserved noncoding sequences. The mutation or deletion of these Tcf/LEF sites greatly diminished induction by β-catenin, and mutation of the Tcf/LEF site T2 abolished protein binding in an electrophoretic mobility shift assay. These results strongly suggest that Axin2 is a direct target of the Wnt pathway, mediated through Tcf/LEF factors. The 5.6-kb genomic sequence was sufficient to direct the tissue-specific expression of d2EGFP in transgenic embryos, consistent with a role for the Tcf/LEF sites and surrounding conserved sequences in the in vivo expression pattern of Axin2. Our results suggest that Axin2 participates in a negative feedback loop, which could serve to limit the duration or intensity of a Wnt-initiated signal

    Domains of axin involved in protein–protein interactions, Wnt pathway inhibition, and intracellular localization

    Get PDF
    Abstract. Axin was identified as a regulator of embryonic axis induction in vertebrates that inhibits the Wnt signal transduction pathway. Epistasis experiments in frog embryos indicated that Axin functioned downstream of glycogen synthase kinase 3 � (GSK3�) and upstream of �-catenin, and subsequent studies showed that Axin is part of a complex including these two proteins and adenomatous polyposis coli (APC). Here, we examine the role of different Axin domains in the effects on axis formation and �-catenin levels. We find that the regulators of G-protein signaling domain (major APC-binding site) and GSK3�-binding site are required, whereas the COOH-terminal sequences, including a protein phosphatase 2A binding site and the DIX domain, are not essential. Some forms of Axin lackin

    Xenopus Wntless and the Retromer Complex Cooperate To Regulate XWnt4 Secretion▿

    No full text
    Wnt signaling is implicated in a variety of developmental and pathological processes. The molecular mechanisms governing the secretion of Wnt ligands remain to be elucidated. Wntless, an evolutionarily conserved multipass transmembrane protein, is a dedicated secretion factor of Wnt proteins that participates in Drosophila melanogaster embryogenesis. In this study, we show that Xenopus laevis Wntless (XWntless) regulates the secretion of a specific Wnt ligand, XWnt4, and that this regulation is specifically required for eye development in Xenopus. Moreover, the Retromer complex is required for XWntless recycling to regulate the XWnt4-mediated eye development. Inhibition of Retromer function by Vps35 morpholino (MO) resulted in various Wnt deficiency phenotypes, affecting mesoderm induction, gastrulation cell movements, neural induction, neural tube closure, and eye development. Overexpression of XWntless led to the rescue of Vps35 MO-mediated eye defects but not other deficiencies. These results collectively suggest that XWntless and the Retromer complex are required for the efficient secretion of XWnt4, facilitating its role in Xenopus eye development

    Osmotic stress-induced phosphorylation by NLK at Ser128 activates YAP

    No full text
    YAP is the major downstream effector of the Hippo pathway, which controls cell growth, tissue homeostasis, and organ size. Aberrant YAP activation, resulting from dysregulation of the Hippo pathway, is frequently observed in human cancers. YAP is a transcription co-activator, and the key mechanism of YAP regulation is its nuclear and cytoplasmic translocation. The Hippo pathway component, LATS, inhibits YAP by phosphorylating YAP at Ser127, leading to 14-3-3 binding and cytoplasmic retention of YAP. Here, we report that osmotic stress stimulates transient YAP nuclear localization and increases YAP activity even when YAP Ser127 is phosphorylated. Osmotic stress acts via the NLK kinase to induce YAP Ser128 phosphorylation. Phosphorylation of YAP at Ser128 interferes with its ability to bind to 14-3-3, resulting in YAP nuclear accumulation and induction of downstream target gene expression. This osmotic stress-induced YAP activation enhances cellular stress adaptation. Our findings reveal a critical role for NLK-mediated Ser128 phosphorylation in YAP regulation and a crosstalk between osmotic stress and the Hippo pathway

    Olig2-induced neural stem cell differentiation involves downregulation of Wnt signaling and induction of Dickkopf-1 expression.

    Get PDF
    Understanding stem cell-differentiation at the molecular level is important for clinical applications of stem cells and for finding new therapeutic approaches in the context of cancer stem cells. To investigate genome-wide changes involved in differentiation, we have used immortalized neural stem cell (NSC) line (HB1.F3) and Olig2-induced NSC differentiation model (F3.Olig2). Using microarray analysis, we revealed that Olig2-induced NSC differentiation involves downregulation of Wnt pathway, which was further confirmed by TOPflash/FOPflash reporter assay, RT-PCR analysis, immunoblots, and immunocytochemistry. Furthermore, we found that Olig2-induced differentiation induces the expression of Dickkopf-1(Dkk1), a potent antagonist of Wnt signaling. Dkk1 treatment blocked Wnt signaling in HB1.F3 in a dosage-dependent manner, and induced differentiation into astrocytes, oligodendrocytes, and neurons. Our results support cancer stem cell hypothesis which implies that signaling pathway for self-renewal and proliferation of stem cells is maintained till the late stage of differentiation. In our proposed model, Dkk1 may play an important role in downregulating self-renewal and proliferation pathway of stem cells at the late stage of differentiation, and its failure may lead to carcinogenesis
    corecore