28 research outputs found
The Saccharomyces cerevisiae high mobility group box protein HMO1 contains two functional DNA binding domains
High mobility group box (HMGB) proteins are architectural proteins whose HMG DNA binding domains confer significant preference for distorted DNA, such as 4-way junctions. HMO1 is one of 10 Saccharomyces cerevisiae HMGB proteins, and it is required for normal growth and plasmid maintenance and for regulating the susceptibility of yeast chromatin to nuclease. Using electrophoretic mobility shift assays, we have shown here that HMO1 binds 26-bp duplex DNA with K d = 39.6 ± 5.0 nM and that its divergent box A domain participates in DNA interactions, albeit with low affinity. HMO1 has only modest preference for DNA with altered conformations, including DNA with nicks, gaps, overhangs, or loops, as well as for 4-way junction structures and supercoiled DNA. HMO1 binds 4-way junctions with half-maximal saturation of 19.6 ± 2.2 nM, with only a modest increase in affinity in the absence of magnesium ions (half-maximal saturation 6.1 ± 1.1 nM). Whereas the box A domain contributes modest structure-specific binding, the box B domain is required for high affinity binding. HMO1 bends DNA, as measured by DNA cyclization assays, facilitating cyclization of 136-, 105-, and 87-bp DNA, but not 75-bp DNA, and it has a significantly longer residence time on DNA minicircles compared with linear duplex DNA. The unique DNA binding properties of HMO1 are consistent with global roles in the maintenance of chromatin structure
Interactions between N- and C-terminal domains of the Saccharomyces cerevisiae high-mobility group protein HMO1 are required for DNA bending
The Saccharomyces cerevisiae high-mobility group protein HMO1 is composed of two DNA-binding domains termed box A and box B, of which only box B is predicted to adopt a HMG fold, and a lysine-rich C-terminal extension. To assess the interaction between individual domains and their contribution to DNA binding, several HMO1 variants were analyzed. Using circular dichroism spectroscopy, thermal stability was measured. While the melting temperatures of HMO1-boxA and HMO1-boxB are 57.2 and 47.2 °C, respectively, HMO1-boxBC, containing box B and the entire C-terminal tail, melts at 46.1 °C, suggesting little interaction between box B and the tail. In contrast, full-length HMO1 exhibits a single melting transition at 47.9 °C, indicating that interaction between box A and either box B or the tail destabilizes this domain. As HMO1-boxAB, lacking only the lysine-rich C-terminal segment, exhibits two melting transitions at 46.0 and 63.3 °C, we conclude that the destabilization of the box A domain seen in full-length HMO1 is due primarily to its interaction with the lysine-rich tail. Determination of DNA substrate specificity using electrophoretic mobility shift assays shows unexpectedly that the lysine-rich tail does not increase DNA binding affinity but instead is required for DNA bending by full-length HMO1; HMO1-boxBC, lacking the box A domain, also fails to bend DNA. In contrast, both HMO1 and HMO1-boxAB, but not the individual HMG domains, exhibit preferred binding to constrained DNA minicircles. Taken together, our data suggest that interactions between box A and the C-terminal tail induce a conformation that is required for DNA bending. © 2006 American Chemical Society
Recommended from our members
Development of a Rapid and High-Throughput Multiplex Real-Time PCR Assay for Mycoplasma hominis and Ureaplasma Species
Bacterial commensals of the human genitourinary tract, Mycoplasma hominis and Ureaplasma species (parvum and urealyticum) can be sexually transmitted, and may cause nongonococcal urethritis, pelvic inflammatory disease, and infertility. Mycoplasma hominis and Ureaplasma species may also cause severe invasive infections in immunocompromised patients. Current culture-based methods for Mycoplasma/Ureaplasma identification are costly and laborious, with a turnaround time between 1 and 2 weeks. We developed a high-throughput, real-time multiplex PCR assay for the rapid detection of M. hominis and Ureaplasma species in urine, genital swab, body fluid, and tissue. In total, 282 specimens were tested by PCR and compared with historic culture results; a molecular reference method was used to moderate discrepancies. Overall result agreement was 99% for M. hominis (97% positive percentage agreement and 100% negative percentage agreement) and 96% for Ureaplasma species (96% positive percentage agreement and 97% negative percentage agreement). Specimen stability was validated for up to 7 days at room temperature. This multiplex molecular assay was designed for implementation in a high-complexity clinical microbiology laboratory. With this method, >90 samples can be tested in one run, with a turnaround time of 4 to 5 hours from specimen extraction to reporting of results. This PCR test is also more labor effective and cheaper than the conventional culture-based test, thus improving laboratory efficiency and alleviating labor shortages
TgPRELID, a Mitochondrial Protein Linked to Multidrug Resistance in the Parasite Toxoplasma gondii
New drugs to control infection with the protozoan parasite Toxoplasma gondii are needed as current treatments exert toxic side effects on patients. Approaches to develop novel compounds for drug development include screening of compound libraries and targeted inhibition of essential cellular pathways. We identified two distinct compounds that display inhibitory activity against the parasite's replicative stage: F3215-0002, which we previously identified during a compound library screen, and I-BET151, an inhibitor of bromodomains, the "reader" module of acetylated lysines. In independent studies, we sought to determine the targets of these two compounds using forward genetics, generating resistant mutants and identifying the determinants of resistance with comparative genome sequencing. Despite the dissimilarity of the two compounds, we recovered resistant mutants with nonsynonymous mutations in the same domain of the same gene, TGGT1_254250, which we found encodes a protein that localizes to the parasite mitochondrion (designated TgPRELID after the name of said domain). We found that mutants selected with one compound were cross resistant to the other compound, suggesting a common mechanism of resistance. To further support our hypothesis that TgPRELID mutations facilitate resistance to both I-BET151 and F3215-0002, CRISPR (clustered regularly interspaced short palindromic repeat)/CAS9-mediated mutation of TgPRELID directly led to increased F3215-0002 resistance. Finally, all resistance mutations clustered in the same subdomain of TgPRELID. These findings suggest that TgPRELID may encode a multidrug resistance factor or that I-BET151 and F3215-0002 have the same target(s) despite their distinct chemical structures. IMPORTANCE We report the discovery of TgPRELID, a previously uncharacterized mitochondrial protein linked to multidrug resistance in the parasite Toxoplasma gondii. Drug resistance remains a major problem in the battle against parasitic infection, and understanding how TgPRELID mutations augment resistance to multiple, distinct compounds will reveal needed insights into the development of new therapies for toxoplasmosis and other related parasitic diseases
Development of a TaqMan Allelic Discrimination Assay for detection of Single Nucleotides Polymorphisms associated with anti-malarial drug resistance
<p>Abstract</p> <p>Background</p> <p>Anti-malarial drug resistance poses a threat to current global efforts towards control and elimination of malaria. Several methods are used in monitoring anti-malarial drug resistance. Molecular markers such as single nucleotide polymorphism (SNP) for example are increasingly being used to identify genetic mutations related to anti-malarial drug resistance. Several methods are currently being used in analysis of SNP associated with anti-malarial drug resistance and although each one of these methods has unique strengths and shortcoming, there is still need to improve and/or develop new methods that will close the gap found in the current methods.</p> <p>Methods</p> <p>TaqMan Allelic Discrimination assays for detection of SNPs associated with anti-malarial drug resistance were designed for analysis on Applied Biosystems PCR platform. These assays were designed by submitting SNP sequences associated with anti-malarial drug resistance to Applied Biosystems website. Eleven SNPs associated with resistance to anti-malarial drugs were selected and tested. The performance of each SNP assay was tested by creating plasmid DNAs carrying codons of interests and analysing them for analysis. To test the sensitivity and specificity of each SNP assay, 12 clinical samples were sequenced at codons of interest and used in the analysis. Plasmid DNAs were used to establish the Limit of Detection (LoD) for each assay.</p> <p>Results</p> <p>Data from genetic profiles of the <it>Plasmodium falciparum </it>laboratory strains and sequence data from 12 clinical samples was used as the reference method with which the performance of the SNP assays were compared to. The sensitivity and specificity of each SNP assay was establish at 100%. LoD for each assay was established at 2 GE, equivalent to less than 1 parasite/μL. SNP assays performed well in detecting mixed infection and analysis of clinical samples.</p> <p>Conclusion</p> <p>TaqMan Allelic Discrimination assay provides a good alternative tool in detection of SNPs associated with anti-malarial drug.</p
Clinical and genomic characterization of hypervirulent Klebsiella pneumoniae (hvKp) infections via passive surveillance in Southern California, 2020–2022
Hypervirulent Klebsiella pneumoniae (hvKp) is more invasive and virulent than classical K. pneumoniae, and requires specialized treatment. To raise clinical awareness, this study determined the prevalence, clinical characteristics, and genomic epidemiology of hvKp infections in Southern California (SoCal) by conducting a passive surveillance in a single large academic medical center. We report here that hvKp infections were more common than expected, accounting for 2.6% of invasive K. pneumoniae infections, and presented with a wide disease spectrum, occasionally mimicking tumors, even co-infecting a COVID-19 patient. Most infections were community acquired with no recent international travel, suggesting hvKp strains are circulating in the community. Genomic analysis revealed genetic diversity, with the K1-ST23 lineage predominating but not clonal, and multiple sequence types of K2 including a SoCal unique K2-ST66 sublineage that had been unrecognized. Our findings highlight the urgency of heightened awareness of hvKp infection in the US, the need for rapid diagnosis of hvKp, and the necessity of implementing robust surveillance programs for hvKp at the institutional or local level
DNA prime/Adenovirus boost malaria vaccine encoding P. falciparum CSP and AMA1 induces sterile protection associated with cell-mediated immunity
Contains fulltext :
118242.pdf (publisher's version ) (Open Access)BACKGROUND: Gene-based vaccination using prime/boost regimens protects animals and humans against malaria, inducing cell-mediated responses that in animal models target liver stage malaria parasites. We tested a DNA prime/adenovirus boost malaria vaccine in a Phase 1 clinical trial with controlled human malaria infection. METHODOLOGY/PRINCIPAL FINDINGS: The vaccine regimen was three monthly doses of two DNA plasmids (DNA) followed four months later by a single boost with two non-replicating human serotype 5 adenovirus vectors (Ad). The constructs encoded genes expressing P. falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1). The regimen was safe and well-tolerated, with mostly mild adverse events that occurred at the site of injection. Only one AE (diarrhea), possibly related to immunization, was severe (Grade 3), preventing daily activities. Four weeks after the Ad boost, 15 study subjects were challenged with P. falciparum sporozoites by mosquito bite, and four (27%) were sterilely protected. Antibody responses by ELISA rose after Ad boost but were low (CSP geometric mean titer 210, range 44-817; AMA1 geometric mean micrograms/milliliter 11.9, range 1.5-102) and were not associated with protection. Ex vivo IFN-gamma ELISpot responses after Ad boost were modest (CSP geometric mean spot forming cells/million peripheral blood mononuclear cells 86, range 13-408; AMA1 348, range 88-1270) and were highest in three protected subjects. ELISpot responses to AMA1 were significantly associated with protection (p = 0.019). Flow cytometry identified predominant IFN-gamma mono-secreting CD8+ T cell responses in three protected subjects. No subjects with high pre-existing anti-Ad5 neutralizing antibodies were protected but the association was not statistically significant. SIGNIFICANCE: The DNA/Ad regimen provided the highest sterile immunity achieved against malaria following immunization with a gene-based subunit vaccine (27%). Protection was associated with cell-mediated immunity to AMA1, with CSP probably contributing. Substituting a low seroprevalence vector for Ad5 and supplementing CSP/AMA1 with additional antigens may improve protection. TRIAL REGISTRATION: ClinicalTrials.govNCT00870987