56 research outputs found
Perioperative statin therapy reduces mortality in normolipidemic patients undergoing cardiac surgery
ObjectiveStatins might have pleiotropic effects, independent of their ability to reduce lipid levels. Recent data have suggested that statins improve early survival and cardiovascular outcomes after coronary artery bypass graft surgery. The effectiveness of statin therapy in normolipidemic cardiac surgery patients is as yet unclear.MethodsWe evaluated 3056 consecutive patients who had undergone cardiac surgery between April 2004 and April 2009. Perioperative statin therapy was defined as continued treatment both before (≥ 6 months) and after the index surgery (included as a discharge medication). Hyperlipidemia (HL) was defined as a total cholesterol level greater than 200 mg/dL within 6 months before surgery. Four groups were analyzed: (1) statin-untreated normolipidemic (NL−, n = 1052); (2) statin-treated normolipidemic (NL+, n = 206); (3) statin-untreated hyperlipidemic (HL−, n = 638); and (4) statin-treated hyperlipidemic (HL+, n = 1160) patients. Adjusted hazard ratios accounted for the known preoperative cardiac risk factors. Mortality was ascertained by retrospective database review and the Social Security Death Index.ResultsThe mean follow-up was 2.2 years. The crude rate of 30-day mortality was 3.0% (32/1052), 0% (0/206), 8.0% (51/638), and 0.7% (8/1160) for the NL−, NL+, HL−, and HL+ groups, respectively. The overall all-cause crude mortality rate was 9.6% (101/1052), 3.9% (8/206), 17.2% (110/638), and 6.5% (75/1160) for the NL−, NL+, HL−, and HL+ groups, respectively. Statin therapy for NL patients undergoing cardiac surgery independently reduced the overall all-cause mortality (adjusted hazard ratio, 0.34; 95% confidence interval, 0.16–0.71; P = .004).ConclusionsPerioperative statin therapy was associated with reduced mid-term mortality for patients undergoing cardiac surgery, irrespective of their baseline lipid status. This clinical evidence suggests that the beneficial effects of statins might extend beyond their lipid-lowering ability
Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study
Introduction:
The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures.
Methods:
In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025.
Findings:
Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p<0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p<0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p<0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP >5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation.
Interpretation:
After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification
Thienylpyridine-based cyclometallated iridium(III) complexes and their use in solid state light-emitting electrochemical cells
The synthesis and characterization of four iridium(III) complexes [Ir(thpy)2(N^N)][PF6] where Hthpy = 2-(2′-thienyl)pyridine and N^N are 6-phenyl-2,2′-bipyridine (1), 4,4′-di-tbutyl-2,2′-bipyridine (2), 4,4′-di-tbutyl-6-phenyl-2,2′-bipyridine (3) or 4,4′-dimethylthio-2,2′-bipyridine (4) are described. The single crystal structures of ligand 4 and the complexes containing the [Ir(thpy)2(1)]+ and [Ir(thpy)2(4)]+ cations have been determined. In [Ir(thpy)2(1)]+, the pendant phenyl ring engages in an intra-cation π-stacking interaction with one of the thienyl rings in the solid state, and undergoes hindered rotation on the NMR timescale in [Ir(thpy)2(1)]+ and [Ir(thpy)2(3)]+. The solution spectra of [Ir(thpy)2(1)][PF6] and [Ir(thpy)2(4)][PF6] show emission maxima around 640 nm and are significantly red-shifted compared with [Ir(thpy)2(2)][PF6] and [Ir(thpy)2(3)][PF6] which have structured emission bands with maxima around 550 and 590 nm. In thin films, the emission spectra of the four complexes are similar with emission peaks around 550 and 590 nm and a shoulder around 640 nm that are reminiscent of the features observed in solution. In solution, quantum yields are low, but in thin films, values range from 29% for [Ir(thpy)2(1)][PF6] to 51% for [Ir(thpy)2(4)][PF6]. Density functional theory calculations rationalize the structured emission observed for the four complexes in terms of the 3LC nature predicted for the lowest-energy triplet states that mainly involve the cyclometallated [thpy]− ligands. Support for this theoretical result comes from the observed features of the low temperature (in frozen MeCN) photoluminescence spectra of the complexes. Photoluminescence and electroluminescence spectra of the complexes in a light-emitting electrochemical cell (LEC) device configuration have been investigated. The electroluminescence spectra are similar for all [Ir(thpy)2(N^N)][PF6] complexes with emission maxima at ≈600 nm, but device performances are relatively poor probably due to the poor charge-transporting properties of the complexes
Improvements in health-related quality of life before and after isolated cardiac operations
Our study compared health-related quality of life (HRQOL) among cardiac surgical patient groups before and after cardiac operations for isolated surgical procedures and examined cardiac surgical patient HRQOL within the context of United States population norms.
Of 2524 patients undergoing cardiac operations, 370 underwent isolated procedures (coronary artery bypass grafting, 136; aortic valve repair or replacement, 96; mitral valve repair or replacement, 92; Maze procedures, 46) between April 18, 2004, and June 30, 2008. They completed Short Form 36 questionnaires at baseline, at 3, 6, and 12 months postoperatively, and annually thereafter. Statistical analyses included χ(2), analysis of variance, longitudinal modeling, and longitudinal multivariable analyses.
Overall, the 370 cardiac surgical patients were 61.5 ± 11.9 years old, 70% men, and 76% white. Significant baseline differences in HRQOL existed among the cardiac surgical groups. Physical and mental components of the Short Form 36 improved from baseline to within 3 to 6 months postoperatively and remained stable through 3 years for all groups. When demographic and clinical covariates were held constant, the effect of cardiac surgical type on postsurgical HRQOL changes was not significant.
HRQOL improves early after cardiac operations and remains relatively constant long-term, independently of procedure type
Recommended from our members
Two-Year Follow Up of the LATERAL Clinical Trial: A Focus on Adverse Events.
BackgroundThe LATERAL trial validated the safety and efficacy of the thoracotomy approach for implantation of the HeartWare HVAD System, leading to Food and Drug Administration approval. We sought to analyze 24-month adverse event (AE) rates, including a temporal analysis of the risk profile, associated with the thoracotomy approach for the HVAD system.MethodsAEs from the LATERAL trial were evaluated over 2 years postimplant. Data was obtained from the Interagency Registry for Mechanically Assisted Circulatory Support database for 144 enrolled United States and Canadian patients. Temporal AE profiles were expressed as events per patient year.ResultsDuring 162.5 patient years of support, there were 25 driveline infections (0.15 events per patient year), 50 gastrointestinal bleeds (0.31 events per patient year), and 21 strokes (0.13 events per patient year). Longitudinal AE analysis at follow-up intervals of <30 and 30 to 180 days, and 6 to 12 and 12 to 24 months revealed the highest AE rate at <30 days, with a decrease in total AEs within the first 6 months. After 6 months, most AE rates either stabilized or decreased through 2 years, including a 95% overall freedom from disabling stroke.ConclusionsTwo-year follow-up of the LATERAL trial revealed a favorable morbidity profile in patients supported with the HVAD system, as AE rates were more likely to occur in the first 30 days postimplant, and overall AE rates were significantly reduced after 6 months. Importantly, 2-year freedom from disabling stroke was 95%. These data further support the improving AE profile of patients on long-term HVAD support. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT02268942
Two-Year Follow Up of the LATERAL Clinical Trial
BackgroundThe LATERAL trial validated the safety and efficacy of the thoracotomy approach for implantation of the HeartWare HVAD System, leading to Food and Drug Administration approval. We sought to analyze 24-month adverse event (AE) rates, including a temporal analysis of the risk profile, associated with the thoracotomy approach for the HVAD system.MethodsAEs from the LATERAL trial were evaluated over 2 years postimplant. Data was obtained from the Interagency Registry for Mechanically Assisted Circulatory Support database for 144 enrolled United States and Canadian patients. Temporal AE profiles were expressed as events per patient year.ResultsDuring 162.5 patient years of support, there were 25 driveline infections (0.15 events per patient year), 50 gastrointestinal bleeds (0.31 events per patient year), and 21 strokes (0.13 events per patient year). Longitudinal AE analysis at follow-up intervals of <30 and 30 to 180 days, and 6 to 12 and 12 to 24 months revealed the highest AE rate at <30 days, with a decrease in total AEs within the first 6 months. After 6 months, most AE rates either stabilized or decreased through 2 years, including a 95% overall freedom from disabling stroke.ConclusionsTwo-year follow-up of the LATERAL trial revealed a favorable morbidity profile in patients supported with the HVAD system, as AE rates were more likely to occur in the first 30 days postimplant, and overall AE rates were significantly reduced after 6 months. Importantly, 2-year freedom from disabling stroke was 95%. These data further support the improving AE profile of patients on long-term HVAD support. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT02268942
Recommended from our members
Two-Year Follow Up of the LATERAL Clinical Trial: A Focus on Adverse Events.
BackgroundThe LATERAL trial validated the safety and efficacy of the thoracotomy approach for implantation of the HeartWare HVAD System, leading to Food and Drug Administration approval. We sought to analyze 24-month adverse event (AE) rates, including a temporal analysis of the risk profile, associated with the thoracotomy approach for the HVAD system.MethodsAEs from the LATERAL trial were evaluated over 2 years postimplant. Data was obtained from the Interagency Registry for Mechanically Assisted Circulatory Support database for 144 enrolled United States and Canadian patients. Temporal AE profiles were expressed as events per patient year.ResultsDuring 162.5 patient years of support, there were 25 driveline infections (0.15 events per patient year), 50 gastrointestinal bleeds (0.31 events per patient year), and 21 strokes (0.13 events per patient year). Longitudinal AE analysis at follow-up intervals of <30 and 30 to 180 days, and 6 to 12 and 12 to 24 months revealed the highest AE rate at <30 days, with a decrease in total AEs within the first 6 months. After 6 months, most AE rates either stabilized or decreased through 2 years, including a 95% overall freedom from disabling stroke.ConclusionsTwo-year follow-up of the LATERAL trial revealed a favorable morbidity profile in patients supported with the HVAD system, as AE rates were more likely to occur in the first 30 days postimplant, and overall AE rates were significantly reduced after 6 months. Importantly, 2-year freedom from disabling stroke was 95%. These data further support the improving AE profile of patients on long-term HVAD support. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT02268942
- …