31 research outputs found

    Cortical Tension Allocates the First Inner Cells of the Mammalian Embryo

    Get PDF
    Every cell in our body originates from the pluripotent inner mass of the embryo, yet it is unknown how biomechanical forces allocate inner cells in vivo. Here we discover subcellular heterogeneities in tensile forces, generated by actomyosin cortical networks, which drive apical constriction to position the first inner cells of living mouse embryos. Myosin II accumulates specifically around constricting cells, and its disruption dysregulates constriction and cell fate. Laser ablations of actomyosin networks reveal that constricting cells have higher cortical tension, generate tension anisotropies and morphological changes in adjacent regions of neighboring cells, and require their neighbors to coordinate their own changes in shape. Thus, tensile forces determine the first spatial segregation of cells during mammalian development. We propose that, unlike more cohesive tissues, the early embryo dissipates tensile forces required by constricting cells via their neighbors, thereby allowing confined cell repositioning without jeopardizing global architecture.Fil: Samarage, Chaminda R.. Monash University; AustraliaFil: White, Melanie D.. Monash University; AustraliaFil: Alvarez, Yanina Daniela. Monash University; Australia. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Fierro González, Juan Carlos. Monash University; AustraliaFil: Henon, Yann. Monash University; AustraliaFil: Jesudason, Edwin C.. National Health Service Scotland; Reino UnidoFil: Bissiere, Stephanie. Monash University; Australia. Institute of Molecular and Cell Biology; SingapurFil: Fouras, Andreas. Monash University; AustraliaFil: Plachta, Nicolas. Monash University; Australia. Institute of Molecular and Cell Biology; Singapu

    SERCA directs cell migration and branching across species and germ layers

    Get PDF
    Branching morphogenesis underlies organogenesis in vertebrates and invertebrates, yet is incompletely understood. Here, we show that the sarco-endoplasmic reticulum Ca2+ reuptake pump (SERCA) directs budding across germ layers and species. Clonal knockdown demonstrated a cell-autonomous role for SERCA in Drosophila air sac budding. Live imaging of Drosophila tracheogenesis revealed elevated Ca2+ levels in migratory tip cells as they form branches. SERCA blockade abolished this Ca2+ differential, aborting both cell migration and new branching. Activating protein kinase C (PKC) rescued Ca2+ in tip cells and restored cell migration and branching. Likewise, inhibiting SERCA abolished mammalian epithelial budding, PKC activation rescued budding, while morphogens did not. Mesoderm (zebrafish angiogenesis) and ectoderm (Drosophila nervous system) behaved similarly, suggesting a conserved requirement for cell-autonomous Ca2+ signaling, established by SERCA, in iterative budding

    Contrasting Expression of Canonical Wnt Signaling Reporters TOPGAL, BATGAL and Axin2LacZ during Murine Lung Development and Repair

    Get PDF
    Canonical Wnt signaling plays multiple roles in lung organogenesis and repair by regulating early progenitor cell fates: investigation has been enhanced by canonical Wnt reporter mice, TOPGAL, BATGAL and Axin2LacZ. Although widely used, it remains unclear whether these reporters convey the same information about canonical Wnt signaling. We therefore compared beta-galactosidase expression patterns in canonical Wnt signaling of these reporter mice in whole embryo versus isolated prenatal lungs. To determine if expression varied further during repair, we analyzed comparative pulmonary expression of beta-galactosidase after naphthalene injury. Our data show important differences between reporter mice. While TOPGAL and BATGAL lines demonstrate Wnt signaling well in early lung epithelium, BATGAL expression is markedly reduced in late embryonic and adult lungs. By contrast, Axin2LacZ expression is sustained in embryonic lung mesenchyme as well as epithelium. Three days into repair after naphthalene, BATGAL expression is induced in bronchial epithelium as well as TOPGAL expression (already strongly expressed without injury). Axin2LacZ expression is increased in bronchial epithelium of injured lungs. Interestingly, both TOPGAL and Axin2LacZ are up regulated in parabronchial smooth muscle cells during repair. Therefore the optimal choice of Wnt reporter line depends on whether up- or down-regulation of canonical Wnt signal reporting in either lung epithelium or mesenchyme is being compared

    Long Covid in adults discharged from UK hospitals after Covid-19 : a prospective, multicentre cohort study using the ISARIC WHO Clinical Characterisation Protocol

    Get PDF
    Funding: This work is supported by grants from: the National Institute for Health Research (NIHR) [award CO-CIN-01], the Medical Research Council [grant MC_PC_19059], the Imperial Biomedical Research Centre (NIHR Imperial BRC, grant P45058), the Health Protection Research Unit (HPRU) in Respiratory Infections at Imperial College London and NIHR HPRU in Emerging and Zoonotic Infections at University of Liverpool, both in partnership with Public Health England, [NIHR award 200907], Wellcome Trust and Department for International Development [215091/Z/18/Z], and the Bill and Melinda Gates Foundation [OPP1209135], and Liverpool Experimental Cancer Medicine Centre (Grant Reference: C18616/A25153), NIHR Biomedical Research Centre at Imperial College London [IS-BRC-1215-20013], EU Platform for European Preparedness Against (Re-) emerging Epidemics 1 [FP7 project 602525] and NIHR Clinical Research Network for providing infrastructure support for this research. LT is a Wellcome Trust clinical career development fellow, supported by grant number 205228/Z/16/Z. This research was funded in part, by the Wellcome Trust. PJMO is supported by a NIHR Senior Investigator Award [award 201385].Background : This study sought to establish the long-term effects of Covid-19 following hospitalisation. Methods : 327 hospitalised participants, with SARS-CoV-2 infection were recruited into a prospective multicentre cohort study at least 3 months post-discharge. The primary outcome was self-reported recovery at least ninety days after initial Covid-19 symptom onset. Secondary outcomes included new symptoms, disability (Washington group short scale), breathlessness (MRC Dyspnoea scale) and quality of life (EQ5D-5L). Findings : 55% of participants reported not feeling fully recovered. 93% reported persistent symptoms, with fatigue the most common (83%), followed by breathlessness (54%). 47% reported an increase in MRC dyspnoea scale of at least one grade. New or worse disability was reported by 24% of participants. The EQ5D-5L summary index was significantly worse following acute illness (median difference 0.1 points on a scale of 0 to 1, IQR: -0.2 to 0.0). Females under the age of 50 years were five times less likely to report feeling recovered (adjusted OR 5.09, 95% CI 1.64 to 15.74), were more likely to have greater disability (adjusted OR 4.22, 95% CI 1.12 to 15.94), twice as likely to report worse fatigue (adjusted OR 2.06, 95% CI 0.81 to 3.31) and seven times more likely to become more breathless (adjusted OR 7.15, 95% CI 2.24 to 22.83) than men of the same age. Interpretation : Survivors of Covid-19 experienced long-term symptoms, new disability, increased breathlessness, and reduced quality of life. These findings were present in young, previously healthy working age adults, and were most common in younger females.Publisher PDFPeer reviewe

    Morphogenetic Implications of Peristalsis-Driven Fluid Flow in the Embryonic Lung.

    No full text
    Epithelial organs are almost universally secretory. The lung secretes mucus of extremely variable consistency. In the early prenatal period, the secretions are of largely unknown composition, consistency, and flow rates. In addition to net outflow from secretion, the embryonic lung exhibits transient reversing flows from peristalsis. Airway peristalsis (AP) begins as soon as the smooth muscle forms, and persists until birth. Since the prenatal lung is liquid-filled, smooth muscle action can transport fluid far from the immediately adjacent tissues. The sensation of internal fluid flows has been shown to have potent morphogenetic effects, as has the transport of morphogens. We hypothesize that these effects play an important role in lung morphogenesis. To test these hypotheses in a quantitative framework, we analyzed the fluid-structure interactions between embryonic tissues and lumen fluid resulting from peristaltic waves that partially occlude the airway. We found that if the airway is closed, fluid transport is minimal; by contrast, if the trachea is open, shear rates can be very high, particularly at the stenosis. We performed a parametric analysis of flow characteristics' dependence on tissue stiffnesses, smooth muscle force, geometry, and fluid viscosity, and found that most of these relationships are governed by simple ratios. We measured the viscosity of prenatal lung fluid with passive bead microrheology. This paper reports the first measurements of the viscosity of embryonic lung lumen fluid. In the range tested, lumen fluid can be considered Newtonian, with a viscosity of 0.016 ± 0.008 Pa-s. We analyzed the interaction between the internal flows and diffusion and conclude that AP has a strong effect on flow sensing away from the tip and on transport of morphogens. These effects may be the intermediate mechanisms for the enhancement of branching seen in occluded embryonic lungs
    corecore