562 research outputs found

    Current-density functional for disordered systems

    Get PDF
    The effective action for the current and density is shown to satisfy an evolution equation, the functional generalization of Callan-Symanzik equation. The solution describes the dependence of the one-particle irreducible vertex functions on the strength of the quenched disorder and the annealed Coulomb interaction. The result is non-perturbative, no small parameter is assumed. The a.c. conductivity is obtained by the numerical solution of the evolution equation on finite lattices in the absence of the Coulomb interaction. The static limit is performed and the conductivity is found to be vanishing beyond a certain threshold of the impurity strength.Comment: final version, 28 pages, 17 figures, to appear in Phys. Rev.

    Simulating radiative shocks in nozzle shock tubes

    Full text link
    We use the recently developed Center for Radiative Shock Hydrodynamics (CRASH) code to numerically simulate laser-driven radiative shock experiments. These shocks are launched by an ablated beryllium disk and are driven down xenon-filled plastic tubes. The simulations are initialized by the two-dimensional version of the Lagrangian Hyades code which is used to evaluate the laser energy deposition during the first 1.1ns. The later times are calculated with the CRASH code. This code solves for the multi-material hydrodynamics with separate electron and ion temperatures on an Eulerian block-adaptive-mesh and includes a multi-group flux-limited radiation diffusion and electron thermal heat conduction. The goal of the present paper is to demonstrate the capability to simulate radiative shocks of essentially three-dimensional experimental configurations, such as circular and elliptical nozzles. We show that the compound shock structure of the primary and wall shock is captured and verify that the shock properties are consistent with order-of-magnitude estimates. The produced synthetic radiographs can be used for comparison with future nozzle experiments at high-energy-density laser facilities.Comment: submitted to High Energy Density Physic

    Instantons and radial excitations in attractive Bose-Einstein condensates

    Get PDF
    Imaginary- and real-time versions of an equation for the condensate density are presented which describe dynamics and decay of any spherical Bose-Einstein condensate (BEC) within the mean field appraoch. We obtain quantized energies of collective finite amplitude radial oscillations and exact numerical instanton solutions which describe quantum tunneling from both the metastable and radially excited states of the BEC of 7Li atoms. The mass parameter for the radial motion is found different from the gaussian value assumed hitherto, but the effect of this difference on decay exponents is small. The collective breathing states form slightly compressed harmonic spectrum, n=4 state lying lower than the second Bogolyubov (small amplitude) mode. The decay of these states, if excited, may simulate a shorter than true lifetime of the metastable state. By scaling arguments, results extend to other attractive BEC-s.Comment: 6 pages, 3 figure

    Temperature-induced resonances and Landau damping of collective modes in Bose-Einstein condensed gases in spherical traps

    Get PDF
    Interaction between collective monopole oscillations of a trapped Bose-Einstein condensate and thermal excitations is investigated by means of perturbation theory. We assume spherical symmetry to calculate the matrix elements by solving the linearized Gross-Pitaevskii equations. We use them to study the resonances of the condensate induced by temperature when an external perturbation of the trapping frequency is applied and to calculate the Landau damping of the oscillations.Comment: revtex, 9 pages, 5 figure

    Spin glass transition in a magnetic field: a renormalization group study

    Full text link
    We study the transition of short range Ising spin glasses in a magnetic field, within a general replica symmetric field theory, which contains three masses and eight cubic couplings, that is defined in terms of the fields representing the replicon, anomalous and longitudinal modes. We discuss the symmetry of the theory in the limit of replica number n to 0, and consider the regular case where the longitudinal and anomalous masses remain degenerate. The spin glass transitions in zero and non-zero field are analyzed in a common framework. The mean field treatment shows the usual results, that is a transition in zero field, where all the modes become critical, and a transition in non-zero field, at the de Almeida-Thouless (AT) line, with only the replicon mode critical. Renormalization group methods are used to study the critical behavior, to order epsilon = 6-d. In the general theory we find a stable fixed-point associated to the spin glass transition in zero field. This fixed-point becomes unstable in the presence of a small magnetic field, and we calculate crossover exponents, which we relate to zero-field critical exponents. In a finite magnetic field, we find no physical stable fixed-point to describe the AT transition, in agreement with previous results of other authors.Comment: 36 pages with 4 tables. To be published in Phys. Rev.

    Elementary excitations of trapped Bose gas in the large-gas-parameter regime

    Full text link
    We study the effect of going beyond the Gross-Pitaevskii theory on the frequencies of collective oscillations of a trapped Bose gas in the large gas parameter regime. We go beyond the Gross-Pitaevskii regime by including a higher-order term in the interatomic correlation energy. To calculate the frequencies we employ the sum-rule approach of many-body response theory coupled with a variational method for the determination of ground-state properties. We show that going beyond the Gross-Pitaevskii approximation introduces significant corrections to the collective frequencies of the compressional mode.Comment: 17 pages with 4 figures. To be published in Phys. Rev.

    Quenched Lattice QCD with Domain Wall Fermions and the Chiral Limit

    Get PDF
    Quenched QCD simulations on three volumes, 83×8^3 \times, 123×12^3 \times and 163×3216^3 \times 32 and three couplings, β=5.7\beta=5.7, 5.85 and 6.0 using domain wall fermions provide a consistent picture of quenched QCD. We demonstrate that the small induced effects of chiral symmetry breaking inherent in this formulation can be described by a residual mass (\mres) whose size decreases as the separation between the domain walls (LsL_s) is increased. However, at stronger couplings much larger values of LsL_s are required to achieve a given physical value of \mres. For β=6.0\beta=6.0 and Ls=16L_s=16, we find \mres/m_s=0.033(3), while for β=5.7\beta=5.7, and Ls=48L_s=48, \mres/m_s=0.074(5), where msm_s is the strange quark mass. These values are significantly smaller than those obtained from a more naive determination in our earlier studies. Important effects of topological near zero modes which should afflict an accurate quenched calculation are easily visible in both the chiral condensate and the pion propagator. These effects can be controlled by working at an appropriately large volume. A non-linear behavior of mπ2m_\pi^2 in the limit of small quark mass suggests the presence of additional infrared subtlety in the quenched approximation. Good scaling is seen both in masses and in fπf_\pi over our entire range, with inverse lattice spacing varying between 1 and 2 GeV.Comment: 91 pages, 34 figure

    Collective excitations of a two-dimensional interacting Bose gas in anti-trap and linear external potentials

    Full text link
    We present a method of finding approximate analytical solutions for the spectra and eigenvectors of collective modes in a two-dimensional system of interacting bosons subjected to a linear external potential or the potential of a special form u(x,y)=μucosh2x/lu(x,y)=\mu -u \cosh^2 x/l, where μ\mu is the chemical potential. The eigenvalue problem is solved analytically for an artificial model allowing the unbounded density of the particles. The spectra of collective modes are calculated numerically for the stripe, the rare density valley and the edge geometry and compared with the analytical results. It is shown that the energies of the modes localized at the rare density region and at the edge are well approximated by the analytical expressions. We discuss Bose-Einstein condensation (BEC) in the systems under investigations at T0T\ne 0 and find that in case of a finite number of the particles the regime of BEC can be realized, whereas the condensate disappears in the thermodynamic limit.Comment: 10 pages, 2 figures include

    The Hamiltonian limit of (3+1)D SU(3) lattice gauge theory on anisotropic lattices

    Get PDF
    The extreme anisotropic limit of Euclidean SU(3) lattice gauge theory is examined to extract the Hamiltonian limit, using standard path integral Monte Carlo (PIMC) methods. We examine the mean plaquette and string tension and compare them to results obtained within the Hamiltonian framework of Kogut and Susskind. The results are a significant improvement upon previous Hamiltonian estimates, despite the extrapolation procedure necessary to extract observables. We conclude that the PIMC method is a reliable method of obtaining results for the Hamiltonian version of the theory. Our results also clearly demonstrate the universality between the Hamiltonian and Euclidean formulations of lattice gauge theory. It is particularly important to take into account the renormalization of both the anisotropy, and the Euclidean coupling βE \beta_E , in obtaining these results.Comment: 10 pages, 11 figure

    From dynamical scaling to local scale-invariance: a tutorial

    Full text link
    Dynamical scaling arises naturally in various many-body systems far from equilibrium. After a short historical overview, the elements of possible extensions of dynamical scaling to a local scale-invariance will be introduced. Schr\"odinger-invariance, the most simple example of local scale-invariance, will be introduced as a dynamical symmetry in the Edwards-Wilkinson universality class of interface growth. The Lie algebra construction, its representations and the Bargman superselection rules will be combined with non-equilibrium Janssen-de Dominicis field-theory to produce explicit predictions for responses and correlators, which can be compared to the results of explicit model studies. At the next level, the study of non-stationary states requires to go over, from Schr\"odinger-invariance, to ageing-invariance. The ageing algebra admits new representations, which acts as dynamical symmetries on more general equations, and imply that each non-equilibrium scaling operator is characterised by two distinct, independent scaling dimensions. Tests of ageing-invariance are described, in the Glauber-Ising and spherical models of a phase-ordering ferromagnet and the Arcetri model of interface growth.Comment: 1+ 23 pages, 2 figures, final for
    corecore