609 research outputs found

    Creating Opportunities for Personal Empowerment for Adolescent Students in a Rural High School

    Get PDF
    BACKGROUND: With the incidence of 3% of children and 6% of adolescents diagnosed with depression, treatment appropriate for this population is needed. Provision of mental health care is limited due to barriers of access such as transportation, parental consent, and availability of services in the adolescent’s environment such as the school setting. OBJECTIVES: To decrease the depressive symptoms and increase the self-confidence perceptions of adolescents in a high school setting utilizing a cognitive-behavioral skills enhancing, seven-session intervention called COPE (Creating Opportunities for Personal Empowerment). STUDY DESIGN: The project was an evidence-based nurse practitioner project utilizing pre- and post- intervention assessment tools (Beck Youth Inventory II and Healthy Lifestyle Beliefs Scale). The project intervention was based on Cognitive Behavior therapy (CBT) principles of the relationship between thinking, feeling, and behavior. A program (COPE TEEN) was the framework for the interventions implementing CBT principles for adolescents. RESULTS: A majority of the adolescent students reported positive outcomes from the study in reducing their depressive symptoms and increasing their perception of self-confidence. The project did not show a statistically significant difference but did demonstrate clinically significant improvement in behavior and perception of self-confidence by the adolescents. CONCLUSIONS: The COPE TEEN program provides tools for the adolescent to learn effective coping skills to demonstrate clinical improvement in depressive symptoms and effective coping skills

    Short- and long-term temperature responses of soil denitrifier net N2O efflux rates, inter-profile N2O dynamics, and microbial genetic potentials

    Get PDF
    Production and reduction of nitrous oxide (N2O) by soil denitrifiers influence atmospheric concentrations of this potent greenhouse gas. Accurate projections of the net N2O flux have three key uncertainties: (1) short- vs. long-term responses to warming, (2) interactions among soil horizons, and (3) temperature responses of different steps in the denitrification pathway. We addressed these uncertainties by sampling soil from a boreal forest climate transect encompassing a 5.2 ∘C difference in the mean annual temperature and incubating the soil horizons in isolation and together at three ecologically relevant temperatures in conditions that promote denitrification. Both short-term exposure to warmer temperatures and long-term exposure to a warmer climate increased N2O emissions from organic and mineral soils; an isotopic tracer suggested that an increase in N2O production was more important than a decline in N2O reduction. Short-term warming promoted the reduction of organic horizon-derived N2O by mineral soil when these horizons were incubated together. The abundance of nirS (a precursor gene for N2O production) was not sensitive to temperature, whereas that of nosZ clade I (a gene for N2O reduction) decreased with short-term warming in both horizons and was higher from a warmer climate. These results suggest a decoupling of gene abundance and process rates in these soils that differs across horizons and timescales. In spite of these variations, our results suggest a consistent, positive response of denitrifier-mediated net N2O efflux rates to temperature across timescales in these boreal forests. Our work also highlights the importance of understanding cross-horizon N2O fluxes for developing a predictive understanding of net N2O efflux from soils

    Short- and long-term temperature responses of soil denitrifier net N2O efflux rates, inter2 profile N2O dynamics, and microbial genetic potentials

    Get PDF
    Production and reduction of nitrous oxide (N2O) by soil denitrifiers influence atmospheric concentrations of this potent greenhouse gas. Accurate projections of the net N2O flux have three key uncertainties: (1) short- vs. long-term responses to warming, (2) interactions among soil horizons, and (3) temperature responses of different steps in the denitrification pathway. We addressed these uncertainties by sampling soil from a boreal forest climate transect encompassing a 5.2 ∘C difference in the mean annual temperature and incubating the soil horizons in isolation and together at three ecologically relevant temperatures in conditions that promote denitrification. Both short-term exposure to warmer temperatures and long-term exposure to a warmer climate increased N2O emissions from organic and mineral soils; an isotopic tracer suggested that an increase in N2O production was more important than a decline in N2O reduction. Short-term warming promoted the reduction of organic horizon-derived N2O by mineral soil when these horizons were incubated together. The abundance of nirS (a precursor gene for N2O production) was not sensitive to temperature, whereas that of nosZ clade I (a gene for N2O reduction) decreased with short-term warming in both horizons and was higher from a warmer climate. These results suggest a decoupling of gene abundance and process rates in these soils that differs across horizons and timescales. In spite of these variations, our results suggest a consistent, positive response of denitrifier-mediated net N2O efflux rates to temperature across timescales in these boreal forests. Our work also highlights the importance of understanding cross-horizon N2O fluxes for developing a predictive understanding of net N2O efflux from soils

    Climate Warming Can Accelerate Carbon Fluxes without Changing Soil Carbon Stocks

    Get PDF
    Climate warming enhances multiple ecosystem C fluxes, but the net impact of changing C fluxes on soil organic carbon (SOC) stocks over decadal to centennial time scales remains unclear. We investigated the effects of climate on C fluxes and soil C stocks using space-for-time substitution along a boreal forest climate gradient encompassing spatially replicated sites at each of three latitudes. All regions had similar SOC concentrations and stocks (5.6 to 6.7 kg C m−2). The three lowest latitude forests exhibited the highest productivity across the transect, with tree biomass:age ratios and litterfall rates 300 and 125% higher than those in the highest latitude forests, respectively. Likewise, higher soil respiration rates (~55%) and dissolved organic C fluxes (~300%) were observed in the lowest latitude forests compared to those in the highest latitude forests. The mid-latitude forests exhibited intermediate values for these indices and fluxes. The mean radiocarbon content (Δ14C) of mineral-associated SOC (+9.6‰) was highest in the lowest latitude forests, indicating a more rapid turnover of soil C compared to the mid- and highest latitude soils (Δ14C of −35 and −30‰, respectively). Indicators of the extent of soil organic matter decomposition, including C:N, δ13C, and amino acid and alkyl-C:O-alkyl-C indices, revealed highly decomposed material across all regions. These data indicate that the lowest latitude forests experience accelerated C fluxes that maintain relatively young but highly decomposed SOC. Collectively, these observations of within-biome soil C responses to climate demonstrate that the enhanced rates of SOC loss that typically occur with warming can be balanced on decadal to centennial time scales by enhanced rates of C inputs

    Creating a database of internet-based clinical trials to support a public-led research programme: A descriptive analysis

    Get PDF
    Background: Online trials are rapidly growing in number, offering potential benefits but also methodological, ethical and social challenges. The International Network for Knowledge on Well-being (ThinkWellâ„¢) aims to increase public and patient participation in the prioritisation, design and conduct of research through the use of technologies. Objective: We aim to provide a baseline understanding of the online trial environment, determining how many trials have used internet-based technologies; how they have been used; and how use has developed over time. Methods: We searched a range of bibliographic databases to March 2015, with no date limits, supplemented by citation searching and references provided by experts in the field. Results were screened against inclusion and exclusion criteria, and included studies mapped against a number of key dimensions, with key themes developed iteratively throughout the process. Results: We identified 1992 internet-based trials to March 2015. The number of reported studies increased substantially over the study timeframe. The largest number of trials were conducted in the USA (49.7%), followed by The Netherlands (10.2%); Australia (8.5%); the United Kingdom (5.8%); Sweden (4.6%); Canada (4%); and Germany (2.6%). South Korea (1.5%) has the highest number of reported trials for other continents. There is a predominance of interventions addressing core public health challenges including obesity (8.6%), smoking cessation (5.9%), alcohol abuse (7.7%) and physical activity (10.2%); in mental health issues such as depression (10.9%) and anxiety (5.6%); and conditions where self-management (16.6%) or monitoring (8.1%) is a major feature of care. Conclusions: The results confirm an increase in the use of the internet in trials. Key themes have emerged from the analysis and further research will be undertaken in order to investigate how the data can be used to improve trial design and recruitment, and to build an open access resource to support the public-led research agenda

    Phosphoinositide-dependent protein kinase-1 (PDK1)-independent activation of the protein kinase C substrate, protein kinase D

    Get PDF
    Phosphoinoisitide dependent kinase l (PDK1) is proposed to phosphorylate a key threonine residue within the catalytic domain of the protein kinase C (PKC) superfamily that controls the stability and catalytic competence of these kinases. Hence, in PDK1-null embryonic stem cells intracellular levels of PKCalpha, PKCbeta1, PKCgamma, and PKCepsilon are strikingly reduced. Although PDK1-null cells have reduced endogenous PKC levels they are not completely devoid of PKCs and the integrity of downstream PKC effector pathways in the absence of PDK1 has not been determined. In the present report, the PDK1 requirement for controlling the phosphorylation and activity of a well characterised substrate for PKCs, the serine kinase protein kinase D, has been examined. The data show that in embryonic stem cells and thymocytes loss of PDK1 does not prevent PKC-mediated phosphorylation and activation of protein kinase D. These results reveal that loss of PDK1 does not functionally inactivate all PKC-mediated signal transduction

    Space Environments and Spacecraft Effects Organization Concept

    Get PDF
    The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while also expanding its mission to explore the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. Each new destination presents an opportunity to increase our knowledge of the solar system and the unique environments for each mission target. NASA has multiple technical and science discipline areas specializing in specific space environments disciplines that will help serve to enable these missions. To complement these existing discipline areas, a concept is presented focusing on the development of a space environments and spacecraft effects (SENSE) organization. This SENSE organization includes disciplines such as space climate, space weather, natural and induced space environments, effects on spacecraft materials and systems and the transition of research information into application. This space environment and spacecraft effects organization will be composed of Technical Working Groups (TWG). These technical working groups will survey customers and users, generate products, and provide knowledge supporting four functional areas: design environments, engineering effects, operational support, and programmatic support. The four functional areas align with phases in the program mission lifecycle and are briefly described below. Design environments are used primarily in the mission concept and design phases of a program. Engineering effects focuses on the material, component, sub-system and system-level selection and the testing to verify design and operational performance. Operational support provides products based on real time or near real time space weather to mission operators to aid in real time and near-term decision-making. The programmatic support function maintains an interface with the numerous programs within NASA, other federal government agencies, and the commercial sector to ensure that communications are well established and the needs of the programs are being met. The programmatic support function also includes working in coordination with the program in anomaly resolution and generation of lessons learned documentation. The goal of this space environment and spacecraft effects organization is to develop decision-making tools and engineering products to support all mission phases from mission concept through operations by focusing on transitioning research to application. Products generated by this space environments and effects application are suitable for use in anomaly investigations. This paper will describe the scope of the TWGs and their relationship to the functional areas, and discuss an organizational structure for this space environments and spacecraft effects organization
    • …
    corecore