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Climate warming enhances multiple ecosystem C fluxes, but the net impact of changing

C fluxes on soil organic carbon (SOC) stocks over decadal to centennial time scales

remains unclear. We investigated the effects of climate on C fluxes and soil C stocks using

space-for-time substitution along a boreal forest climate gradient encompassing spatially

replicated sites at each of three latitudes. All regions had similar SOC concentrations

and stocks (5.6 to 6.7 kg C m−2). The three lowest latitude forests exhibited the highest

productivity across the transect, with tree biomass:age ratios and litterfall rates 300 and

125% higher than those in the highest latitude forests, respectively. Likewise, higher

soil respiration rates (∼55%) and dissolved organic C fluxes (∼300%) were observed

in the lowest latitude forests compared to those in the highest latitude forests. The

mid-latitude forests exhibited intermediate values for these indices and fluxes. The mean

radiocarbon content ( 14
1 C) of mineral-associated SOC (+9.6h) was highest in the

lowest latitude forests, indicating a more rapid turnover of soil C compared to the

mid- and highest latitude soils ( 14
1 C of −35 and −30h, respectively). Indicators of

the extent of soil organic matter decomposition, including C:N, 13δ C, and amino acid

and alkyl-C:O-alkyl-C indices, revealed highly decomposed material across all regions.

These data indicate that the lowest latitude forests experience accelerated C fluxes that

maintain relatively young but highly decomposed SOC. Collectively, these observations of

within-biome soil C responses to climate demonstrate that the enhanced rates of SOC

loss that typically occur with warming can be balanced on decadal to centennial time

scales by enhanced rates of C inputs.

Keywords: soil carbon, climate change, boreal forests, organic matter biogeochemistry, ecosystem carbon fluxes

INTRODUCTION

Ecosystem C fluxes typically respond positively to climate warming (Rustad et al., 2001;
Hobbie and Chapin, 2008; Hopkins et al., 2012; Natali et al., 2012), but the net impact of
changing C fluxes on soil organic carbon (SOC) stocks over decadal to centennial time scales
remains unclear. This uncertainty is in large part responsible for the lack of consensus among
Earth system models (ESMs) (Arora et al., 2013; Friedlingstein et al., 2014), which currently
struggle to project soil C turnover and stocks accurately (Todd-Brown et al., 2013). Much of
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the existing knowledge of the net response of SOC to climate
is derived from manipulative studies (Hobbie and Chapin,
2008; Sistla et al., 2014), providing insights about responses on
relatively short (e.g., days to years) timescales. The few studies
that examine longer-term climate manipulations of individual
ecosystems (e.g., Melillo et al., 2011; Sistla et al., 2014) often
focus on a single driving variable, which is useful for constraining
the role of specific climate factors. However, this approach can
limit inferences at the ecosystem scale. For example, heating
part of the ecosystem limits assessments of independent and
interactive effects of multiple drivers of ecosystem processes
(Rustad et al., 2001). As a result, current understanding of
interactive effects and resultant ecosystem C fluxes in response to
climate change is insufficient to predict SOC feedbacks to climate
on the multi-decadal timescales most relevant to contemporary,
anthropogenic climate change. Indeed, ESMs sometimes lack
consensus even on the direction of change (Qian et al., 2010;
Arora et al., 2013; Friedlingstein et al., 2014).

In contrast to manipulative studies, global- and continental-
scale observations (Post et al., 1982; Jobbágy and Jackson,
2000; Bond-Lamberty and Thomson, 2010; Doetterl et al.,
2015) capture the combined influences of biology, geochemistry,
temperature and precipitation patterns on SOC dynamics across
longer (centuries to millennia) timescales, and indicate that
climate (Amundson, 2001) and its impact on geochemical
features of soil can alter SOC stocks (Torn et al., 1997;
Doetterl et al., 2015). For example, with increasing latitude
from equatorial to polar regions, the proportion of SOC in
surface horizons increases, similar to patterns of increasing
precipitation and clay content and decreasing temperature (Post
et al., 1982). Also correlating with this latitudinal change, soil
respiration decreases (Bond-Lamberty and Thomson, 2010) and,
more broadly, SOC turnover in organic horizons decreases
(Jobbágy and Jackson, 2000) toward the poles. In relatively warm
climates ecosystem C losses generally increase to a greater degree
than net primary productivity (Schlesinger and Bernhardt, 2013),
suggesting the potential for net soil C losses (De Deyn et al.,
2008), which is consistent with observations of surface soils
across biomes.

Inferences derived from comparisons among biomes,
however, do not necessarily apply to within-biome SOC
processes (Rustad et al., 2001), and it remains unclear how C
cycling within individual biomes will respond to climate change
on decadal to centennial timescales, prior to a shift in biome
identity. Studies that employ natural environmental gradients
can provide compelling evidence of the role of climate factors in
regulating soil C fluxes, composition and stocks within biomes
(Kane et al., 2005; Bahn et al., 2008; Zimmermann et al., 2009;
Norris et al., 2010), but very few integrate multiple C fluxes
into a unified study and even fewer include measures of soil
C turnover (but see Giardina et al., 2014). Implementing such
studies is problematic for multiple reasons. They entail expansive
spatial and temporal scales of inquiry, requiring quantification of
multiple SOC inputs, transformations, and losses across multiple
soil profiles. They typically also reflect inputs to soil profiles that
exhibit distinct characteristics, and as such cannot reveal the
impact of climate change prior to climate-induced vegetation

shifts (Sjogersten et al., 2003). Soil moisture, an important driver
of SOC responses to temperature (Post et al., 1982; Trumbore
and Harden, 1997; Jobbágy and Jackson, 2000; Preston et al.,
2006), also can co-vary across temperature or climate gradients,
complicating the interpretation of observed patterns across such
gradients (Kane et al., 2005; Hilli et al., 2008; Norris et al., 2010).

We addressed many of these challenges by determining the
sources, transformations and fates of SOC along a spatially
replicated, mesic boreal forest climate transect to project the
impact of contemporary, anthropogenic climate change (i.e., in
the coming century) on SOC stocks. The study sites are similar
in forest composition, successional stage, and soil moisture, but
they differ in mean annual temperature (MAT; 0 to 5.2◦C) and
precipitation (MAP; 1074 to 1505 mm. Both MAT and MAP
increase with decreasing latitude, analogous to predicted climate
change for much of this biome within the next century (Stocker
et al., 2013), and resulting in similar soil moisture regimes along
the transect Table 1. The focus on these mesic forests, similar
in most respects except for temperature and precipitation, is a
key attribute shared by few other studies and thus differs from
most climate transect studies, which typically reflect the net
result of changing vegetation, soil type, and moisture limitations.
Furthermore, the few studies where bothMAT andMAP increase
such that soil moisture regime is consistent focus on SOC
turnover or chemical composition (Fissore et al., 2009). Very few
combine these measures with quantified ecosystem C fluxes (but
see Giardina et al., 2014). By addressing the question of how SOC
stocks and fluxes vary along this constrained latitudinal gradient,
we are able to assess the likely response of soil C in a region
where both soil microbial activity and tree productivity (Charney
et al., 2016) are not likely to be limited by available water in a
warmer future. By combining measures of soil C turnover and
its chemistry with quantified ecosystem C fluxes, we provide
independent lines of evidence for some of the direct impacts of
projected temperature and precipitation changes on soil C.

MATERIALS AND METHODS

Description of Study Sites and Sampling
The forest sites in this study are part of the Newfoundland and
Labrador Boreal Ecosystem Latitudinal Transect (NL-BELT), a
climosequence consisting of mature stands dominated by balsam
fir (Abies balsamifera (L.) Mill.) underlain by humo-ferric podzol
soils. According to growth yield curves established for each
region, the ages of dominant trees at each site were all within
∼10 years of the age at which site maturity is reached. All
sites represent closed-canopy forests at a similar, mature stage
of maximum net primary productivity. This is an important
attribute for comparing ecosystem C fluxes in isolation of stand
ontogeny (Kane et al., 2005). Harvesting and insect outbreaks are
the major mechanisms of stand replacement in each region, with
no evidence of fire in any site. The regions investigated here span
a 5.2◦C gradient in mean annual temperature and a range of 1074
to 1505 mm in mean annual precipitation (Table 1).

Three sites were located in each of the three major study
regions, Grand Codroy (GC), Salmon River (SR), Eagle River
(ER) (Figure 1). At each site, triplicate sampling plots were
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TABLE 1 | Study region and site characteristics.

Region Elev Tree age Geology of till O Horiz. 1
14C (h) Soil moisture VWC Mineral soil characteristics

Site (m) (y) F H LFH B C:Mpy %silt %clay 1
14C

ER 119 (14) 176 136 0.23 (0.11) 0.32 (0.02) 9.1 (1.5) 34 (2.3) 4.0 (0.3) −30.0 (17.9)

1 145 133 (33) G,Gd,D 0.22 0.31 9.6 32 (0.8) 4.4 (1.4) −22.6

2 170 118 (50) IF,Q,M;Gd 0.33 0.31 7.5 32 (0.3) 3.9 (1.1) −16.9

3 136 105 (38) G,D,DG 0.12 0.35 10.3 36 (4.0) 3.8 (1.7) −50.4

SR 97 (29) 151 119 0.28 (0.12) 0.29 (0.14) 9.9 (2.9) 38 (8.0) 16 (7.9) −34.7 (35.0)

1 31 66 (22) L,S,Sh 0.20 0.24 13.2 46 (7.9) 25 (12) −62.2

2 16 100 (6) G,S 0.23 0.18 7.8 29 (11) 9.0 (2.9) 4.73

3 38 124 (47) L, S, Sh 0.42 0.44 8.5 41 (12) 15 (5.2) −46.6

GC 47 (6) 155 140 0.30 (0.05) 0.37 (0.09) 9.1 (1.5) 37 (11) 6.3 (1.7) 10.9 (7.5)

1 100 50 (5) S,TS 0.36 0.39 9.6 47 (2.8) 7.2 (1.3) 17.6

2 165 40 (8) S,Go,G 0.29 0.28 7.5 26 (11) 4.3 (2.6) 2.73

3 215 52 (9) S,Go,G 0.26 0.45 10.3 37 (2.1) 7.4 (2.5) 12.4

The elevation, average tree age in years, radiocarbon content for the F and H horizons pooled from 3 plots within each of the three sites in each region, mean annual soil volumetric

water content (VWC; m3/m3) for the organic horizon (LFH) and mineral soil, and mineral soil organic C to pyrophosphate extractable iron plus aluminum ratio (C:Mpy ), percent silt and

clay by weight, and radiocarbon content of mineral soils for samples pooled from three plots for each site. Mean values of the three study sites in each of the regions are given along

with the standard deviation (sd) in all except the regional climate parameters. All values are given as the mean with the standard deviation in parentheses. Geology of glacial till material

within and below C horizon was identified from samples collected across each site as reported here as igneous rocks containing feldspar (IF ), quartz (IQ), and mica (IM ), granodiorite

(Gd), granite (G), diorite (D), diorite gneiss (DG), gabbro (Go), sandstone (S), talc schist (TS), limestone (L), and shale (Sh).

established. Soil samples were pooled to establish three composite
samples for each of the nine study sites (Figure 1). An area
of 20 × 20 cm was removed to obtain the organic layer (L,
F and H horizons). The top 10 cm of the mineral B horizon
was collected using a metal corer (5.1 cm diameter). The Ae

horizon was discontinuous across all sites and was too thin to
sample in ∼60% of the plots and was not found at all in ∼20%
of the plots. The organic layers were separated into three O
horizons. The O horizon samples and mineral soil samples were
dried at 50◦C and ground for analysis (total of 108 samples).
The average tree biomass and age was determined for each site
using the Canadian Forest Service National Forest Inventory
(NFI) Protocol (Beaudoin et al., 2014). Ring counting of cores
taken at breast height was used to obtain the average age of the
trees in each stand. Each core captured the bole’s center, with
an average of 23 trees cored at each of the 9 sites. Total tree
biomass was determined from the measurement of all trees≥ 9.0
cm dbh within the 400 m2 circular NFI plot in each site using
the diameter breast height (dbh; 1.3m). Tree biomass contributed
from those trees <9 cm in diameter represented <1 to 6% of the
total biomass across all sites.

Litter Soil Input Fluxes
Litterfall was collected over a four-year period from June 2011
to June 2015 using nine (3 per plot), 0.34 m2 collection traps
located throughout each of the nine study sites. Litterfall was
collected at the end of summer, in late fall, and in early spring of
each year and contents were sorted into major component types
(green needles, brown needles, cones, bark, lichen, and twig wood
<1 cm diameter), dried, and weighed. The annual weighted-
average %C of each type, with the exception of the twig wood,
from the 2011 to 2012 sampling was determined and applied to
all collection times to establish total annual litterfall C for each

of the 4 years. The annual weighted %C of each input type was
determined by creating pooled samples of each type by plot,
based on the seasonally-weighted contributions of each to the
annual total litterfall. These pooled samples were then analyzed
for %C. Twigs< 1 cm in diameter were added to this total annual
input by assuming a 50% C content and using the annual input
rates of twigs in each plot.

Dissolved Organic Carbon Fluxes
The flux of dissolved organic carbon (DOC) was determined
using passive pan lysimeters installed below the organic horizon
in all regions. Nine lysimeters were installed (3 per plot) in each
of the ER-1, SR-1 and GC-1 sites during summer 2011. The
lysimeters have a collection area of 0.064 m2. Water samples
were collected at least 3 times per year from summer 2011
through summer 2014 and analyzed for DOC content. The pan
(zero-tension) lysimeters each consist of a 48 × 25.5 × 15
cm (l × w × d) container overlain with a hard plastic mesh
grate installed directly beneath the organic soil horizons, and
connected by tubing to a 12 L holding container buried deeper in
themineral soil.Water samples were pumped from the lysimeters
with minimum disturbance to the collection area. Samples were
filtered (Whatman GF/F) within 1 day of sampling and filtrates
were stored at 4◦C prior to analysis of dissolved organic carbon
(Shimadzu TOC-V). Three out of the nine lysimeters at each
site were dosed with mercuric chloride as a fixative to prevent
decomposition between collection periods; this treatment did not
have a significant effect on the DOC concentrations or fluxes.
Therefore, data from all nine lysimeters were used at each site.

Total Soil CO2 Flux Measures
We measured total soil CO2 loss (root- and microbe-derived),
soil temperature and soil moisture content twice a month at
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FIGURE 1 | Map of the Newfoundland and Labrador Boreal Ecosystem Latitudinal Transect hydrologic regions, sites and structure of the monitoring

and sampling that occurred within each site. The figure includes the Grand Codroy (GC; red); Salmon River (SR; purple); and Eagle River (ER; blue) regions, and

the latitudes and longitudes of the three established forest sites in each region. A conceptual drawing of the monitoring and sampling scheme at each of the nine sites

is provided. The largest circle depicts the approximate layout of each site, which consists of a homogenous stand roughly 100m in diameter. Three 10m diameter

plots were randomly assigned in each site for soil sampling (triplicate) and litter traps (triplicate). Soil temperature and moisture were continuously monitored at mid

depth in the organic horizon and at 5 cm depth in the mineral soil. Four separate plots were established across each site for measurement of total soil respiration from

a pair of collars. Soil temperature and moisture were recorded at sites where soil respiration was measured. Passive pan lysimeters were installed in triplicate within

each of the three plots within ER-1, SR-1 and GC-1, and respiration was directly measured at SR-1 and GC-1.

the most accessible sites (SR-1and GC-1) during the snow-free
period (May – November) in 2011 and 2012. We installed a pair
of PVC collars within each of four plots located within each
of the SR-1 and GC-1 sites. These collars (7-cm section of 10-
cm inside diameter) were inserted 4–5 cm into the forest floor
after removing the litter and herbaceous layer. This depth is
above the interface of the organic and mineral soil where the
majority of roots are found. Total soil CO2 loss was measured
using a LI-6400 portable CO2 infrared gas analyzer (IRGA)
equipped with a LI-6400-09 soil chamber. Soil temperature
and moisture were measured simultaneously using a penetrable
soil temperature probe (Licor) and a Campbell Hydro-Sense
penetration probe inserted in the soil to 10 cm in the vicinity
(within ∼15 cm) of each PVC collar. Soil temperature and soil
moisture content were also recorded continuously at depths of 5
and 10 cm at three locations within each of the nine study sites
(all three regions) using copper-constantan thermocouples and

water content reflectometers attached to data loggers (Campbell
Scientific).

Soil temperature was the primary correlate of total soil
respiration, while soil moisture did not exert any significant effect
in these forest sites (Zhu et al., Personal Communication). We
used this knowledge and prior successful use of soil temperature
with controlled soil moisture conditions to predict soil CO2

efflux (Lavigne et al., 2003). Combining this information with
site specific temperature responses derived from soil incubation
results (Podrebarac et al., 2016), we applied soil temperature
records to estimate the total soil CO2 flux for snow-free
periods at the northern-most ER sites, where frequent CO2 flux
measurements were not possible. We also applied this technique
to estimate total soil CO2 flux for snow-free periods at the
additional uninstrumented SR and GC sites, using site-specific
temperature-response models generated from data collected at
both SR-1 and GC-1 (see Supplemental Information).
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Soil Carbon Stocks and Organic Matter
Chemistry
The C and N concentration and C and N stable isotope
composition of soils were determined on dried, ground samples.
All soil samples for chemical analyses were dried at 50◦C to
a constant weight; subsamples were dried at 105◦C and used
to correct for residual moisture when reporting concentrations
relative to dry weight of soil. The C and N content and δ13C and
δ15N of all soil profile samples were analyzed using a Carlo Erba
NA1500 Series II Elemental Analyser (Milan, Italy) interfaced to
DeltaV+ isotope ratio mass spectrometer (IRMS) via a ConfloIII
interface (Thermo, Bremen, Germany) at Memorial University.
Larger subsamples of the ground mineral soils were analyzed for
N content and δ15N using V2O5 and an Elementar Isotope Cube
(Germany) interfaced to a Delta Advantage (Thermo, Germany)
IRMS via a Conflo III at the G.G Hatch Isotope Laboratory
at the University of Ottawa. A comparison of common soil
samples for C content and stable C isotope composition from this
study confirmed consistent results between the two laboratories,
enabling combined use of results for the mineral soil samples.
We used soil bulk density obtained for all organic horizon and
mineral soil samples and to determine soil C stocks.

Samples of each horizon (L, F, H, and B) from each of the three
plots were pooled for each site and used for radiocarbon analysis,
nuclearmagnetic resonance spectroscopy (NMR) and amino acid
composition of the mineral horizons. For radiocarbon of the
organic horizon, F and H horizons were analyzed after they
were further pooled for each region. Both the graphitization
and radiocarbon analyses were conducted at the University
of Georgia Center for Applied Isotope Studies. Radiocarbon
content of the mineral soil organic C was obtained following
acid fumigation of ground, dried soil subsamples (Hedges and
Stern, 1984) with the cyrogenically purified CO2 generated from
the combustion of samples in presence of CuO and catalytically
converted to graphite (Vogel et al., 1984, 1987). Sample 14C/13C
ratios were measured using a CAIS 0.5 MeV accelerator mass
spectrometer and compared to the ratio measured from the
Oxalic Acid I (NBS SRM 4990) standard. We report both 1

14C
and inferred mean residence times (MRT) as the mean of three
sites’ values for each of the three regions. Under steady state
conditions, a homogeneous SOC pool’s mean residence time,
turnover time, and average radiocarbon age are equivalent.
Though homogeneity of the soil C pool is not a valid assumption
and thus inferring average radiocarbon age is not appropriate,
inferred mean residence times provide a valid, temporal point
of reference for our modeling results. All radiocarbon data
are corrected for isotope fractionation using the δ13C of each
subsample.

Due to the high Fe content of the mineral soils in this
study, mineral soil samples were processed using a modified
version of established methods for soils (Schmidt et al., 1997) to
obtain the acid insoluble fraction. A 20 g sample of each ground
mineral sample was weighed directly into 250 mL polycarbonate
centrifuge tubes. Following the addition of 100 mL of 1N HCl
each sample was agitated for 1 h to remove salts and carbonates.
Samples were then centrifuged at 4000 rpm (∼1250 g) for 15

min and the recovered pellet was treated with 100mL of a 10%
(v/v) HF solution and shaken for 6 h at room temperature.
Samples were centrifuged again at 4000 rpm (∼1250 g) for 15
min to recover the demineralized residue. Following up to five
repetitions of the HF/HCl treatment the final residues were then
rinsed 3 times with NanoUV water. Final residues were freeze-
dried and homogenized and ground using a mortar and pestle
prior to NMR analysis. Using a Bruker AVANCE II 600 MHz
equipped with a Bruker 3.2mm MAS triple-tuned 1H/19F/13C
probe, samples were run at 600.33 MHz for 1H and 150.96 MHz
for 13C and spun at 20 kHz at a constant temperature of 25◦C.
13C NMR (CPMAS) experiments had a contact times of 2ms,
the Hartmann-Hahn condition was set at 62.5 and 100 kHz
was used for 1H decoupling. The organic horizon samples were
analyzed using 4K scans while mineral soils required 24K scans.
13C chemical shifts were referenced to tetramethylsilane (TMS)
with adamantane as an external secondary reference (Harris
et al., 2002). Peak fitting was performed using Dmfit (Massiot
et al., 2002), with percent areas extracted with the same fitting
parameters across all samples.

Samples for total hydrolysable amino acid analysis (5-10mg
for organic horizon soils, ∼25mg for mineral soils) were added
to glass ampules with 1 mL 6N HCl. Ampules were flame-sealed
and heated at 110◦C for 20 h. Following hydrolysis, ampules were
opened and an aliquot was dried under a gentle stream of N2 gas.
After dissolving samples in MilliQ water norvaline was added
as an internal standard. Amino acids were derivatized using a
Phenomenez EZ:Faast kit (Phenomenex, USA) and separated
by gas chromatography using a Phenomenex ZB-AAA column
and quantified with a flame ionization detector. We assessed the
extent of SOM diagenesis by calculating a degradation index
based on differences in amino acid composition analogous to
degradation indices developed by Dauwe et al. (1999) andMenzel
et al. (2015) to interpret the extent of diagenesis of sedimentary
organic matter in marine and lacustrine systems. A principle
component analysis (PCA) identifying the most significant
trends in the full amino acid composition was employed using
the mole % composition of each of the 14 amino acids analyzed
in the pooled litter samples and in the L, F, H, and B horizons in
the soil profiles (see Supplementary Information for details).

Mineral Soil Size Fractions and Metal
Content
The proportions of silt and clay, and the concentration of
non-crystalline and organically complexed Al and Fe in the
mineral horizon soils were determined for all mineral soil
horizons collected at the plot scale (n = 27). The silt and
clay fractions were separated and evaluated in the <53 µm
fraction using dispersion by sonication, wet sieving, flocculation
and centrifugation according to Soukup et al. (2008). The
noncrystalline Al and Fe fraction was extracted using ammonium
oxalate (Mao), and the Al and Fe complexed with organic matter
(Mpy) was extracted using sodium pyrophosphate following
Courchesne and Turmel (2007). The extracts were analyzed for
Al and Fe on a PerkinElmer Optima 5300DV inductively coupled
plasma optical emission spectrometry (Shelton, CT, USA). The
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ratio of soil C to the pyrophosphate extractable metal (as Fe
plus Al; C:Mpy) presented here can be indicative of the degree
of chelation of soil C with metal oxides. Complete bonding or
complexation of all SOC with Fe and Al is likely to happen at
C:Mpp < 10 whereas values of C:Mpp > 10 likely indicate that
such complexation is not effective (Oades, 1989).

Modeling Soil Radiocarbon
The SoilR package (version 1.1-25; https://cran.r-project.org/
web/packages/SoilR/index.html; Sierra et al., 2014) was used
to estimate the time period over which litter input and SOC
mineralization fluxes at GC would need to be sustained at ER to
generate mineral horizon SOC 1

14C equivalent to that observed
at GC. Soil organic 1

14C is a result of both 14C inputs to the
profile, which accelerated between 1950 and the early 1960s
due to atmospheric testing of nuclear weapons, radioactive 14C
decay, and losses following SOC decomposition. The half-life
of 14C (∼5730 years) is long compared to the decadal time
scales relevant for SOC cycling, resulting in the mixture of pre-
bomb and post-bomb C inputs being the key determinants of the
observed SOC 1

14C. For example, 1
14C signatures decline by

about 6h in 50 years due to radioactive decay, a small change
compared to the atmospheric enrichment of 14C >500h in
the 1960s. As a result, we used soilR to estimate the time for
ER to reach an equivalent level of pre-bomb C rather than the
same absolute 1

14C value, due to complications from the rapidly
changing atmospheric 1

14C.
First, we used inverse modeling to constrain the parameters

necessary to produce the observed 1
14C values at ER and GC.

We assumed the mineral horizon C stocks were in steady state in
both regions and that the C inputs and outputs to the mineral soil
were 50% of the total measured respiration (Buchmann, 2000). A
2-pool model was applied, with the size of the fast and slow pools
equivalent to the average SOC pool size in the coarse (>53 µm)
and fine (<53 µm) fractions across all sites in each of the three
regions. SOC loss rates for the two pools and the rate of transfer
from the fast to the slow pool were determined by modeling from
1950 to 2009 (the last year included in the radiocarbon dataset
used in SoilR). Fast- and slow-pool mineralization rates and the
rate of transfer between the pools were selected such that the
C stocks remain in steady state and 1

14C reaches the observed
value in 2009 (+10h for GC, −30h for ER; Figure S1). The
process was repeated for ER using lower litter inputs and CO2

losses (proportional to the difference in measured respiration
rates).

The decay rates determined via inverse modeling were then
used to calculate the size of the fast, pre-bomb slow, and post-
bomb slow C pools in both regions in 2009. The fast pool was
not separated into pre- and post-bomb fractions because the pre-
bomb fast pool is removed over the course of the simulation
and does not affect 2009 1

14C. After determining the size of
the pre-bomb C pool and its loss rate for both regions, the
higher GC rate was applied to the ER stock and the model
was run forward from 2010 (Figure 4). This model process
was used to estimate the time GC fluxes would need to be
maintained at ER to reach the GC stock of pre-bomb C. We
tested the sensitivity of the model results to our assumption

of mineral horizon respiration, the proportion of C in fast-
and slow-cycling pools, and the initial 1

14C of pre-bomb C in
both regions (Supplemental Information). Of these variables, the
initial radiocarbon content of the pre-bomb C had the largest
impact on model results. Therefore, we used a range of initial
radiocarbon contents to estimate a range of possible values for
the time required for ER SOC stocks to acquire radiocarbon
signatures similar to those observed at GC after cycling at GC
rates (Figure S2).

Statistical Analyses
We tested the effect of region on mineral soil radiocarbon, clay
content and C:Mpp ratio, the soil C stocks in the LFH andmineral
soil, the total soil CO2 flux for the snow free season, annual soil
DOC flux, and litterfall input rates using a one-way ANOVA.
Where variances violated the assumption of normalcy, we used
the Kruskal-Wallis one-way analysis of variance by ranks. The
soil organic matter C:N, δ13C, THAA degradation index, and
ratio of alkyl to O-alkyl C were all tested for the effect of horizon,
region and their interaction using a two-way ANOVA. Variances
in C:N and δ13C were not normally distributed when litterfall
was included as a horizon in the two way ANOVA but were
normally distributed when litterfall was omitted. We present
results without the litterfall included in the model. Where region
or horizon effects were noted, a post hoc test of all possible
pairwise treatment comparisons was accomplished using Tukey’s
Honest Significant Difference test with a family error rate of 5%.

The relationship between litter input rates and SOC stocks
in the LFH horizon was evaluated using correlation analysis.
The factors controlling variation in mineral soil C concentration
(%C) and stocks were tested using a 3-way ANOVA with litter
input, clay concentration (%), and ammonium extractable Fe
and Al (Mao;g kg soil−1; a proxy for non-crystalline mineral
concentration) and their interactions as independent variables.
Given that both litterfall and non-crystalline mineral content
had an effect on mineral SOC stocks, we tested for their effects
and their interactions on SOC bioreactivity. Here, we define
SOC bioreactivity as soil C-normalized cumulative mineral
soil respiration (mg C g SOC−1) following 43 and 475 days
of incubation at 10◦C and constant moisture, as reported in
Laganière et al. (2015). We also used a two-way ANOVA to assess
potential effects of region, C:Mpy ratio and their interaction on
SOC bioreactivity. These tests were driven by our anticipation
of region being associated with SOM decomposition stage
(Laganière et al., 2015) and the utility of C:Mpy ratios as a proxy
for the mineral adsorptive capacity of soil (Masiello et al., 2004).
Tests were conducted using JMP 8.0 using an α = 0.05.

RESULTS AND DISCUSSION

The Balance between Soil C Inputs and
Losses with Projected Climate Change
Carbon fluxes in these boreal forest soils were greatest in the
lowest latitude forests, which had the highest MAT and MAP
(Figure 2). The relative increases in C inputs to soils with
decreasing latitude were similar in magnitude to the increases in
C removal due to respiration and DOC transport. The ratio of

Frontiers in Earth Science | www.frontiersin.org 6 February 2017 | Volume 5 | Article 2

https://cran.r-project.org/web/packages/SoilR/index.html
https://cran.r-project.org/web/packages/SoilR/index.html
http://www.frontiersin.org/Earth_Science
http://www.frontiersin.org
http://www.frontiersin.org/Earth_Science/archive


Ziegler et al. Soil C Maintained Despite Enhanced Fluxes

FIGURE 2 | Diagram depicting averaged C stocks and fluxes across

three, spatially replicated boreal forests within each of the three

regions comprising the Newfoundland and Labrador Boreal

Ecosystem Latitudinal Transect (NL-BELT). The upper most arrow at the

top depicts mean annual temperature (MAT), precipitation (MAP), and potential

evapotranspiration (PET) for each study region based on the Environment

Canada climate normals for 1981–2010 (Government of Canada). Values

represent soil organic C (SOC) stocks in the organic horizon (LFH) and the top

10 cm of the mineral B horizon (lower stacked bar graphs), litterfall inputs

including needles, cones, bark, and twig wood (<1 cm diameter) (green arrow

bars), total soil CO2 losses (red arrow bars), the transfer flux of dissolved

organic carbon (DOC) from the LFH to the surface of the B horizon (blue arrow

bars), and the radiocarbon signatures and inferred mean residence times of

the soil organic C in the top 10 cm of the mineral B soil (bottom graph). All

fluxes are in g C m−2 year−1; SOC stocks are in kg C m−2. Different lower

case letters are provided where a significant regional effect was detected

within a given C stock or flux with an α = 0.05 level. Error bars represent one

standard deviation. Error bars emanating from the bottom of the mineral soil C

stock bars represent the cumulative error of the LFH plus mineral soil C stocks.

tree biomass to age, an index of net forest productivity, increased
by ∼300% from the coldest to warmest region (Figure 3), and
litterfall increased by ∼125% (Figure 2). Soils in the warmest
region received 129 g C m−2 year−1 more litterfall than the
coolest region. Estimates of fine root inputs to these soils, derived
from the average ratio of fine root turnover to needle litterfall
inputs in boreal forests (∼2.2 Ruess et al., 1996), were 284 g
C m−2 year−1 greater in the warmest region. Soil respiration
increased by ∼55% and DOC fluxes to the mineral horizons
increased by 300%with decreasing latitude (Figure 2), suggesting

FIGURE 3 | Relationships between a proxy for forest productivity (tree

biomass:age) and mean annual temperature (MAT; red circles) and

precipitation (MAP; blue triangles) for the sites within each region of

the NL-BELT. See text for climate transect details.

a significant increase in the mobilization and subsequent loss of
soil C with increasing temperature and precipitation.

These results highlight important differences in the responses
of forest productivity and C losses to climate across the boreal
biome. Not all soil C inputs were directly measured in this study,
but consistent C stocks in organic and mineral soil horizons
across the regions provides strong evidence for an approximate
balance between C inputs and losses in these forests. Studies
of boreal forests in more continental climates suggest decreases
in soil C stocks with warming along climate gradients (Kane
and Vogel, 2009; Norris et al., 2010). However, increases in tree
mortality attributed to drought in interior continental boreal
forests compared to coastal Canadian forests (Peng et al., 2011)
suggest a shift from temperature to precipitation limitation
of high latitude forests in continental climate regions. The
forests studied here, where MAP can exceed more interior-
continental sites by up to 1000mm, receive annual precipitation
that exceeds evaporative demand (Figure 2), an important
feature impacting the balance of net C fixation relative to
respiration (Dunn et al., 2006). Our results suggest that in regions
where forest productivity is predicted to increase under future
climate scenarios (Charney et al., 2016; D’Orangeville et al.,
2016), soil C inputs can keep pace with the increased losses
associated with warming. Experimental warming in temperate
forests has revealed initial net losses of C from soils that
were ameliorated by gains in plant productivity in response
to warming (Melillo et al., 2011). The present study of intact
boreal forest ecosystems that have experienced different climate
histories provides direct evidence for the impacts of a naturally-
occurring positive response of productivity to a warmer climate
on soil C stocks. Total annual radiation inputs, however, decrease
with increasing latitude and represent a climate-independent
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factor that can regulate productivity. For example, the 22-year
average solar radiation record from the Surface meteorological
and Solar Energy (SSE) web portal (NASA Langley Research
Center’s Atmospheric Science Data Center) indicates light levels
are ∼14% lower in the highest latitude region across the same
growing season length as the lowest latitude region of the transect
studied here. These features highlight how the extent of any
positive productivity response to a warming climate in these
ecosystems will depend upon both water and light availability
supporting primary production.

Mineral SOC stocks did not differ substantially across regions
(Figure 2), and they exhibit generally low soil sorption capacities
due to low clay content (∼5%) and a ratio of SOC to
pyrophosphate extractable metal (C:Mpy) close to ten (Masiello
et al., 2004; Table 1). Variations in mineral soil C stocks observed
here (regional standard error of the mean up to 0.54 kg C
m−2) were similar to those reported for surface mineral soils
in other boreal forest podzols (Kane et al., 2005; Olsson et al.,
2009) where variation can be substantial due in part to spatial
variation in soil content. Mean soil content for the top 10 cm
of the mineral soil was 62.6 ± 5, 71.1 ± 8, and 79.9 ± 8 kg
m−2 in the GC, SR and ER regions, respectively. The regional
difference in mineral soil content (ANOVA; p = 0.0080) was
attributed to a significantly lower soil content in the lowest
latitude relative to highest latitude sites (p = 0.0002). This
indicates that greater soil inputs, and not greater soil content,
was likely responsible for the consistent soil C stocks observed
across latitude in these forests. Site level variation in soil C
concentration (Figure S3) suggests soil C may also have been
associated with site (mineral content and character) or even
plot level (litterfall input) characteristics. However, consistent
with the general observation of low sorption capacity, the clay
concentration exhibited no relationship with mineral SOC (Table
S4), while mineral content and inputs exerted a combined

influence on mineral SOC. The noncrystalline mineral content
(ammonium-oxalate extractable metals; MAO), litterfall input,

and their interactions had significant effects on mineral SOC

respiration (Table S5) signifying the influence of inputs andmetal
content on SOC bioavailability in these mineral soils. However,

MAO was weakly correlated with mineral SOC (Figure S4). This
is consistent with the dominant role of inputs in regulating the

source and form of mineral SOC, which can be influenced by

transport of metals with DOC to the B horizon, particularly in
podzols.

To further assess the role of mineral content in regulating SOC

stocks in these forest soils, we examined whether the bioreactivity

of mineral SOC (Laganière et al., 2015) was related to mineral
content, as has been demonstrated in other soil types (Torn et al.,

1997; Doetterl et al., 2015). Neither MAO or C:Mpy exhibited any

relationship withmineral SOC bioreactivity (Table S5; Figure S3),
indicating little evidence of a major role for mineral protection

in regulating the SOC content of these soils. The absence of

geochemical controls on SOC content provides further evidence
that climate drives the measured regional differences in C fluxes.

This is congruent with the maintenance of soil C socks via

increased inputs with climate warming.

Mean Residence Time and Extent of
Alteration of Soil C Indicate Increased
Turnover of SOC with Projected Climate
Change
The radiocarbon content of the SOC provides independent
evidence for increased SOC turnover in the lowest latitude
forests (Figure 2). Radiocarbon contents were similar among
the organic horizon C pools (Table 1), indicating less pre-bomb
C and thus relatively short mean residence times (<30 year).
Such short mean residence times are typical of surface horizons
(Trumbore, 2000), and make it difficult to distinguish differences
in surface SOC turnover. In contrast, mineral soils exhibited
generally more pre-bomb C, resulting in longer mean residence
times.Mineral soils in the warmest region exhibited shortermean
residence times than those in the cooler regions (modern vs.
310–352 years). The range in radiocarbon content is consistent
with observations in other podzolic forest soils (Kane et al., 2005;
van der Voort et al., 2016), and in this study indicates a more
rapid turnover of SOC in the warmest region’s sites compared
to those in the coldest region. The more variable radiocarbon
content among sites in the Salmon River region reflects two sites
with relatively long mean residence times (>300 year). These
longer mean residence times can be explained by the occurrence
of glacial till marine deposits containing shale (Table 1). These
two sites also exhibited the highest clay content, congruent
with the underlying geology of those sites (Van Houton, 1953;
Mitchell and Soga, 2005). Extreme windthrow events in this
region also likely contribute to the greater variation in mineral
soil radiocarbon, C concentrations and SOC stocks relative to
the other regions in this study. Evidence of wood and O horizon
intrusion into mineral soils has been observed in soil pits in
this region, congruent with studies of other boreal forest podzols
where a history of windthrow events exists (Kramer et al.,
2004).

The time that would be required for the mineral SOC in
the coldest, highest latitude forests of our study to acquire the
radiocarbon signature of the warmest, lowest latitude forests was
estimated using a modeling approach. We used a model defining
two soil pools with distinct turnover times and in steady state,
with a series structure for exchange between the pools (SoilR;
Sierra et al., 2014; Supplementary Information). We applied
SOC mineralization rates estimated from inverse modeling of
radiocarbon content of the warmest region’s mineral SOC to
SOC stocks in the coldest region. We assumed that the mean
proportion of the coarse (>53 µm) and fine (<53 µm) soil
fractions from across all study sites provides an estimate of the
proportion of relatively fast and slow turnover soil C pools.
Model simulations indicate that the SOC mineralization rates
experienced in the warmest forests would need to be sustained
in the coldest region for 10 to 60 years for the coldest region’s
soils to exhibit the modern radiocarbon signatures observed
in the warmest region’s soils (Figure 4). The results of this
modeling exercise, in conjunction with the estimates of SOC
mean residence times, indicate soil C dynamics across this
latitudinal transect are operating on decadal timescales relevant
to contemporary climate change.
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Various measures of the extent of decomposition and
alteration of soil OM independently demonstrate relatively
minor variability across the transect, despite the higher rates
of C turnover in the lowest latitude forests. The C:N of soil
OM decreased with depth at all sites (Figure 5A), and this is
indicative of the microbial degradation of C-rich substrates and
immobilization of N (Post et al., 1985; Hobara et al., 2013). The

FIGURE 4 | Sensitivity analysis for a range of possible initial 114C

values of pre-bomb C in soil profiles of forests comprising the

Newfoundland Labrador Boreal Ecosystem Latitudinal Transect. For

each combination of values, the model was run as described in the text and

illustrated in Figures S1 and S2; the range of results is reported here. The

analysis was performed with the initial pre-bomb 1
14C equal in the Eagle River

(ER) and Grand Codroy (GC) forest soils (no offset; dashed line with circles)

and with ER 40 and 60h depleted in 14C compared to GC, equivalent to the

observed offset between the two regions (offset = 40 and 60h; solid line with

squares and dashed line with diamonds, respectively). The model scenario in

which the initial pre-bomb 1
14C = −67h at ER forms the upper bound of the

sensitivity analysis because more in 14C enriched initial values cannot simulate

the formation of SOC with 1
14C = −30h using the measured fluxes.

δ13C of soil OM increased with depth (Figure 5B) indicating an
increasing extent of degradation (Nadelhoffer and Fry, 1988).
Similarly, the amino acid degradation index indicated increasing
alteration of soil OM with depth (Figure 5C). Increases in alkyl
to O-alkyl ratios with depth were indicative of the preferential
decomposition of carbohydrates (Figure 5D) and are consistent
with the other diagenetic indicators. Minor latitudinal changes
were observed in the C:N and alkyl to O-alkyl ratios of the
organic horizons, and this appears to be due to differences
in the composition of litter inputs (Kohl et al., Personal
Communication; Philben et al., 2016).

The similarity among degradation indices of mineral OM
across the latitudinal transect were surprising given the
significant differences in radiocarbon content across the regions.
The modern mineral soil OM in the warmest region appears to
be as decomposed and altered from fresh litterfall as does soil
OM with much longer mean residence time (∼300 year) in the
coolest region. This demonstrates that radiocarbon signatures are
not a reliable indicator of the extent of decomposition of soil
OM in these forests. Combined with soil texture and the non-
crystalline mineral content discussed above, these observations
further suggest that physiochemical properties, such as mineral
surface area, porosity, hydrophobicity and charge, all of which
can govern the degree to which OM is susceptible to microbial
degradation (Paul, 1984; Baldock and Skjemstad, 2000), may be
less important in the preservation of soil OM in these forests than
climatic factors.

Maintenance of Mesic Boreal Forest Soil C
Stocks with Projected Climate Change
Climate change includes direct effects of increased temperature
and precipitation (Stocker et al., 2013) as well as indirect

FIGURE 5 | The molar C to N ratio (C:N; A), stable C isotope values (δ13C, B), the total hydrolyzable amino acid based degradation index (THAA; C), and the ratio

of the alkyl-C to O-alkyl-C based upon CPMAS 13C-NMR (D) for annual integrated needle litterfall (LTF), horizons of the organic layer (L, F, H), and the top 10 cm of the

mineral (B) horizon. Note the CPMAS 13C-NMR results for the B horizon sample are for the acid insoluble fraction only. All values are provided as the mean of the three

study site composite samples collected from each region (coldest ER in blue circles, middle region SR in purple squares, and warmest region GC in red triangles), with

error bars representing one standard deviation. Results (p-values) of a two-way ANOVA testing the effect of region and soil horizon and their interaction (excluding the

LTF which exhibited non-normal variances in the C:N and δ13C) on each measure are provided on each panel. Results of post-hoc Tukey’s Honest Significant test (α

= 0.05) for the effect of region within each horizon and the LTF are indicated by lower case letters; differences among regions are signified by different letters.
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effects such as changes in nutrient cycling, productivity and
vegetation composition (Schimel et al., 1994; Asner et al., 1997;
Medlyn et al., 2000; Sistla et al., 2014). Integration of these
direct and indirect effects and the net responses of soil C,
though greatly informed via experimentation (Shaver et al.,
1992; Stromgren and Linder, 2002), can be more holistically
achieved through the observations of ecosystems that have
experienced different climates. The short temporal nature of
most ecosystem C flux measures, typically made over years,
and the difficulty in obtaining measures of all inputs and
losses of soil C present challenges for tracking soil C responses
to climate change. We gained novel insights of the impacts
of anthropogenic climate change in the coming century by
combining measurable ecosystem C fluxes with biogeochemical
indicators of SOM transformations. In doing so we obtained
an independent and integrative measure of soil C responses to
climate change.

This study provides independent lines of evidence indicating
some terrestrial ecosystems, including those projected to
experience rapid climate change (Stocker et al., 2013), may
not experience net SOC losses to the atmosphere with climate
warming this century. In these boreal forests, direct, ecosystem-
scale observations of accelerated soil C turnover resulted from
enhanced forest productivity, soil respiration, and DOC losses
with decreasing latitude. In contrast to global- or continental-
scale patterns of SOC occurring across distinct biomes (Jobbágy
and Jackson, 2000; Frank et al., 2012), it appears that SOC
stocks within mesic boreal forests can be maintained in spite
of enhanced SOC losses under climatic conditions projected
in the coming decades. This observation is similar to that
observed in wet montane tropical forests (Giardina et al., 2014),
but the mechanisms responsible for the maintenance of SOC
stocks appears to differ between these biomes. In tropical
forests, increased soil respiration with warming appears largely
supported by root inputs with no evidence for change in turnover
of the broader SOC pool (Giardina et al., 2014). In these mesic
boreal forests, warming-induced increases in respiration and
DOC losses appear supported by enhancement of multiple SOC
inputs. If these results prove robust in the coming decades, SOC
stocks may not generate a positive feedback to a warming climate,
assuming increases in forest productivity and associated inputs to
soils are maintained.
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