9 research outputs found

    A Portable Passive Rehabilitation Robot for Upper-Extremity Functional Resistance Training

    No full text
    Objective: Individuals with neurological damage (e.g., stroke or cerebral palsy) often experience a significant loss of arm function. Robotic devices that address muscle strength deficits in a task-specific manner can assist in the recovery of arm function; however, current devices are typically large, bulky, and expensive to be routinely used in the clinic or at home. This study sought to address this issue by developing a portable planar passive rehabilitation robot, PaRRo. Methods: We designed PaRRo with a mechanical layout that incorporated kinematic redundancies to generate forces that directly oppose the user's movement. Cost-efficient eddy current brakes were used to provide scalable resistances. The lengths of the robots linkages were optimized to have a reasonably large workspace for human planar reaching. We then performed theoretical analysis of the robot's resistive force generating capacity and steerable workspace using MATLAB simulations. We also validated a prototype device by having a subject move the end-effector along different paths at a set velocity using a metronome while simultaneously collecting surface electromyography (EMG) and end-effector forces felt by the user. Results: Results from simulation experiments indicated that the robot was capable of producing sufficient end-effector forces for functional resistance training. We also found the end-effector forces from the user were similar to the theoretical forces expected at any direction of motion. EMG results indicated that the device was capable of providing adjustable resistances based on subjects' ability levels, as the muscle activation levels scaled with increasing magnet exposures. Conclusion: These results indicate that PaRRo is a feasible approach to provide functional resistance training to the muscles along the upper-extremity. Significance: The proposed robotic device could provide a technological breakthrough that will make rehabilitation robots accessible for small outpatient rehabilitation centers and in-home therapy

    Human-centered design of a novel soft exosuit for post-stroke gait rehabilitation

    No full text
    Abstract Background Stroke remains a major cause of long-term adult disability in the United States, necessitating the need for effective rehabilitation strategies for post-stroke gait impairments. Despite advancements in post-stroke care, existing rehabilitation often falls short, prompting the development of devices like robots and exoskeletons. However, these technologies often lack crucial input from end-users, such as clinicians, patients, and caregivers, hindering their clinical utility. Employing a human-centered design approach can enhance the design process and address user-specific needs. Objective To establish a proof-of-concept of the human-centered design approach by refining the NewGait® exosuit device for post-stroke gait rehabilitation. Methods Using iterative design sprints, the research focused on understanding the perspectives of clinicians, stroke survivors, and caregivers. Two design sprints were conducted, including empathy interviews at the beginning of the design sprint to integrate end-users’ insights. After each design sprint, the NewGait device underwent refinements based on emerging issues and recommendations. The final prototype underwent mechanical testing for durability, biomechanical simulation testing for clinical feasibility, and a system usability evaluation, where the new stroke-specific NewGait device was compared with the original NewGait device and a commercial product, Theratogs®. Results Affinity mapping from the design sprints identified crucial categories for stakeholder adoption, including fit for females, ease of donning and doffing, and usability during barefoot walking. To address these issues, a system redesign was implemented within weeks, incorporating features like a loop-backed neoprene, a novel closure mechanism for the shoulder harness, and a hook-and-loop design for the waist belt. Additional improvements included reconstructing anchors with rigid hook materials and replacing latex elastic bands with non-latex silicone-based bands for enhanced durability. Further, changes to the dorsiflexion anchor were made to allow for barefoot walking. Mechanical testing revealed a remarkable 10-fold increase in durability, enduring 500,000 cycles without notable degradation. Biomechanical simulation established the modularity of the NewGait device and indicated that it could be configured to assist or resist different muscles during walking. Usability testing indicated superior performance of the stroke-specific NewGait device, scoring 84.3 on the system usability scale compared to 62.7 for the original NewGait device and 46.9 for Theratogs. Conclusion This study successfully establishes the proof-of-concept for a human-centered design approach using design sprints to rapidly develop a stroke-specific gait rehabilitation system. Future research should focus on evaluating the clinical efficacy and effectiveness of the NewGait device for post-stroke rehabilitation
    corecore